
Validating
Lightning
Signer

SILICON SALON 2

https://vls.tech/

VLS

https://vls.tech/


What is VLS?

in HSMs to secure enterprise scale
lightning nodes
ensure custody on an inexpensive
consumer device

We're an open-source project, not a company.

Software can be run in a wide variety of use
cases: 

VLS



VLS

DEVRANDOM KEN SEDGWICK
CO-FOUNDER CO-FOUNDER

Our Team

JACK RONALDI
PRODUCT MANAGER

https://twitter.com/devrandom01
https://twitter.com/ksedgwic
https://twitter.com/JackRonaldi


VLS

Unmet Need

lightning funds must be "hot", with
network connected private key 

large attack surface with lots of code
and rapid feature development

Lightning nodes more challenging to
secure than Bitcoin wallets:

Signing

Policy Controls

Custody

More challenging for lightning. If remote signer is not
carefully considering channel state, can be tricked into
approving a transaction which steals funds from the node.
See Blind Signing Considered Harmful for more ...

VLS software enforces a comprehensive set of policy
controls which protect the node's funds even if the node is
entirely compromised.

VLS = secrets + state  --> Protect lightning funds & Simple
way to provide custody:

On an inexpensive consumer device it is sufficient to run
VLS to maintain custody of the funds; the node itself can be
run in the cloud as a Lightning Service Provider (LSP).

https://gitlab.com/lightning-signer/docs/-/wikis/Blind%20Signing%20Considered%20Harmful
https://gitlab.com/lightning-signer/validating-lightning-signer/-/blob/main/docs/policy-controls.md


Requirements

Current Devices

Code

Embedded Device Requirements

Flash: 828.00 KiB (release build for STM32F413)
RAM: Estimated 1KB per active channel
NVStorage: Same as RAM, (excluding historical
payment hashes)
Capable of secp256k1 ECDSA and Schnorr

Tamper-proof hardware might be needed
Boot and firmware update security might be needed
Supply chain security might be needed
A wide range of cost sensitivity is likely (consumer <->
enterprise)

Base Requirements:

VLS can be used by integrating developers in a wide
range of solutions:

Wasm
STM32F412,413
ESP32-C3

VLS written in rust
Core VLS code is built using
no_std to facilitate running on
embedded hardware.

VLS

https://gitlab.com/lightning-signer/validating-lightning-signer/-/tree/main/wasm
https://gitlab.com/lightning-signer/validating-lightning-signer/-/tree/main/wasm
https://gitlab.com/lightning-signer/validating-lightning-signer/-/tree/main/wasm
https://gitlab.com/lightning-signer/validating-lightning-signer/-/tree/main/wasm
https://gitlab.com/lightning-signer/validating-lightning-signer/-/tree/main/wasm
https://gitlab.com/lightning-signer/validating-lightning-signer/-/tree/main/wasm
https://gitlab.com/lightning-signer/validating-lightning-signer/-/tree/main/wasm
https://gitlab.com/lightning-signer/validating-lightning-signer/-/tree/main/wasm
https://gitlab.com/lightning-signer/validating-lightning-signer/-/tree/main/wasm
https://gitlab.com/lightning-signer/validating-lightning-signer/-/tree/main/wasm
https://gitlab.com/lightning-signer/validating-lightning-signer/-/tree/main/wasm
https://gitlab.com/lightning-signer/validating-lightning-signer/-/tree/main/vls-signer-stm32
https://github.com/stakwork/sphinx-key/blob/master/ARCHITECTURE.md


Spiral Blockstream

VLS Sponsors

https://blockstream.com/
https://spiral.xyz/


Connect
With Us!

VLS

https://vls.tech/

Main Code Repository

Chat with us on Matrix

https://vls.tech/
https://gitlab.com/lightning-signer/validating-lightning-signer

