
Secure Processing Unit

Cramium Labs

Cramium Labs Background

Company Overview

- A minority subsidiary of CrossBar Inc.
- CrossBar developed ReRAM and selector (1TnR high-density memory) technologies, enabling non-volatile memory storage to be embedded into any processor, microcontroller, FPGA, or as a standalone memory chip

Technology Progress

- Authenticator IC production with ReRAM and PUF in 28nm
- Licensed ReRAM to Microchip
 - First silicon on 2Mbit ReRAM macro on 12nm FinFET in 1Q22
- More than 330 patents

 Top 20 semiconductor companies based on strength of patent portfolio - IEEE Spectrum (2016)

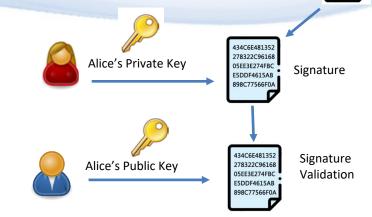
Backed by Reputable Financial and Strategic Investors

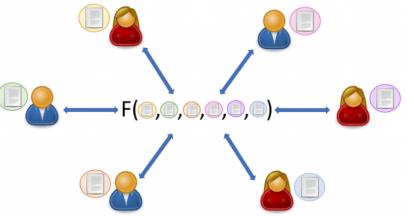
KLEINER PERKINS.

Correlation Ventures

Korea Investment Partners Co., Ltd.

Tyche Partners





Trend toward Distributed Key Management

Transaction Data

- Commonly used single key-pair is not optimal
 - Created for a time when generating a key pair, generating a signature, and verifying a signature were all substantial compute tasks
 - Compute power no longer a limitation
 - Using a single private key is <u>risky</u>
- Distributed Key Management with Threshold signatures is the way of the future
 - Use of multiple devices/parties to manage loss, security, succession
 - System architectures for improved key management exist, however <u>device and</u> <u>semiconductor support has been lacking</u> so far
 - A highly performant and secure chip like Cramium SPU is well-suited for this purpose
- Significant advantages
 - Protection against theft/hacking
 - Protection against loss of "pin" or user error
 - Protection against interruption/succession problems

Multi-Party Computation (MPC) - Multiple party jointly come up with the same results w/o revealing secrets

Continuous Improvement of MPC Protocols

Revision history of major ECDSA MPC protocols

GG18 (https://eprint.iacr.org/2019/114)

- 20211217:214733 (most recent)
- 20190207:165325

Lindell17 (https://eprint.iacr.org/2017/552)

- 20211031:082507 (most recent)
- 20211003:152307
- 20210831:103431
- 20191016:154644
- 20191012:163051
- 20181121:194904
- 20181010:181855
- 20181008:113335
- 20180829:062821
- 20180801:100320
- 20171130:204840
- 20170613:073228
- 20170608:194335

CGGMP21 (https://eprint.iacr.org/2021/060)

- 20211021:135659 (most recent)
- 20211021:083327
- 20210118:082423

• MPC protocols evolves continuously for improved security and performance

MPC - Key Generation

• SW-only based solution limits performance significantly

SW-only based solutions

CGGMP21 lib (<u>https://github.com/taurusgroup/multi-party-sig</u>) 5 round key generation with participant number = 4

	P0	P1	P2	P3
R1	2.42s	4.95s	4.07s	2.68s
R2	<1ms	<1ms	<1ms	<1ms
R3	2.18s	1.99s	720ms	2.08s
R4	<1ms	1.51ms	1.05ms	<1ms
R5	<1ms	<1ms	<1ms	<1ms

GG18 lib (<u>https://github.com/bnb-chain/tss-lib</u>)

4 round key generation with participant number = 4

	P0	P1	P2	P3
R1	14.41s	10.98s	10.56s	6.23s
R2	1.33s	1.34s	1.32s	1.35s
R3	22.33ms	25.18ms	25.43ms	23.56ms
R4	38.10ms	35.35ms	59.4ms	53.68ms

MPC - Key Generation Time Breakdown

GMP21	Paillier key generation & ZKP computation/verification take most tim				
Round 1	P0	P1	P2	Р3	
Paillier keygen	4.29s	3.61s	4.23s	5.19s	
Pedersen parameters	12.8ms	22.4ms	11.9ms	12.9ms	
ElGamal keygen	<1ms	23.5ms	<1ms	<1ms	
VSS	<1ms	<1ms	<1ms	<1ms	
Others (Schnorr random number etc)	<1ms	1.0ms	<1ms	<1ms	
Round 1 total	4.31s	3.66s	4.24s	5.20s	
Round 3	РО	P1	P2	Р3	
RID, other random number	<1ms	<1ms	<1ms	<1ms	
Compute proof for well-formed Paillier key	1.43s	1.58s	1.97s	1.63s	
Compute proof for correct Pedersen parameters	515ms	549ms	238ms	415ms	
Paillier encryption of VSS shares	371ms	220ms	266ms	335ms	
Round 3 total	2.31s	2.35s	2.47s	2.38s	

MPC - Online Signing Time

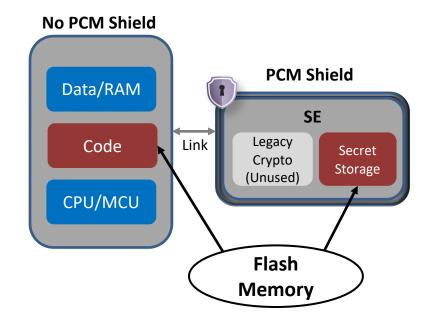
CGGMP21

1-of-2

Verify – validate others ZKPs, commitments etc Compute – compute ZKP, generates random numbers etc.

Round	PO	P1
R1 verify	NA	NA
R1 compute	0.141	0.131
R1 total	0.141	0.131
R2 verify	0.092	0.09
R2 compute	0.82	0.801
R2 total	0.912	0.891
R3 verify	0.463	0.458
R3 compute	0.071	0.072
R3 total	0.534	0.53
R4 verify	0.084	0.085
R4 compute	0	0
R4 total	0.084	0.085
R5 verify	0	0
R5 compute	0	0
R5 total	0	0
R1-5 total	1.671	1.637
Total*	2.9 sec	2.9 sec

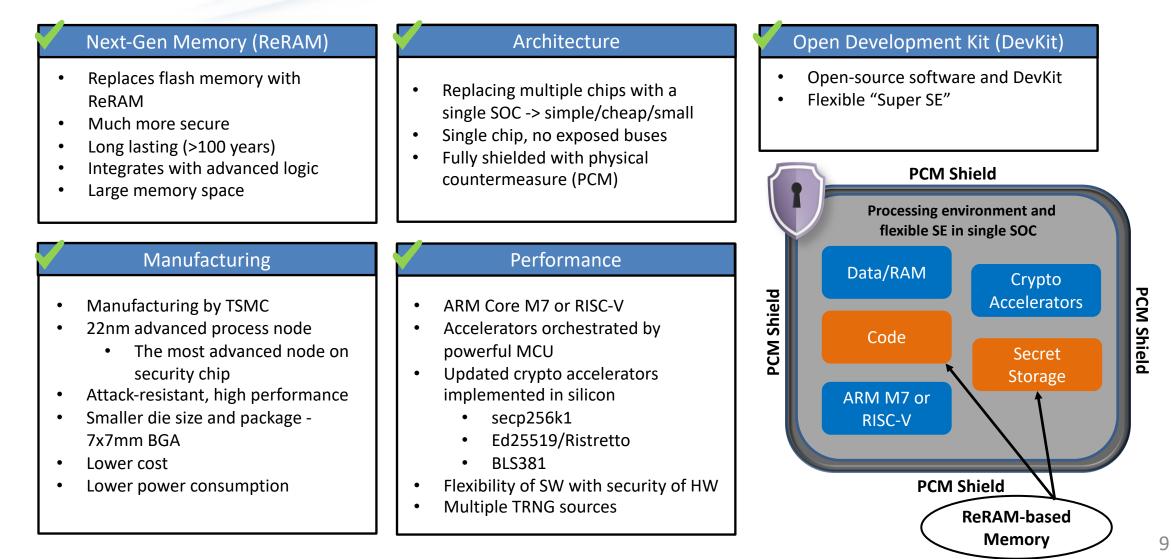
1 of 5	Round	P0	P1	P2	P3	P4
4-of-5	R1 verify	NA	NA	NA	NA	NA
	R1 compute	0.684	0.826	0.706	0.677	0.665
	R1 total	0.684	0.826	0.706	0.677	0.665
	R2 verify	0.824	0.794	0.729	0.855	0.858
	R2 compute	5.84	8.16	5.71	5.92	5.96
	R2 total	6.664	8.954	6.439	6.775	6.818
	R3 verify	4.097	3.533	4.166	4.134	4.138
	R3 compute	0.206	0.32	0.269	0.273	0.183
	R3 total	4.303	3.853	4.435	4.407	4.321
	R4 verify	0.781	0.643	0.674	0.794	0.681
	R4 compute	1	0	0	0	1
	R4 total	1.781	0.643	0.674	0.794	1.681
	R5 verify	0	0	0	0	0
	R5 compute	0	0	0.005	0	0
	R5 total	0	0	0.005	0	0
	R1-5 total	13.432	14.276	12.259	12.653	13.485
	Total*	14.6 sec				


*Includes overhead such as goroutine synchronization, wait for other members to complete current round etc

SW-only based solutions limit the scalability of MPC

unit: second 0 means <1ms

Cold Storage for Crypto is "Broken"

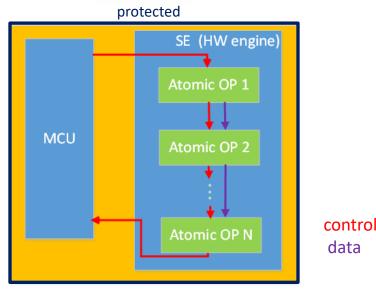

- Non-secure MCU works with discrete SE (Secure Element) over exposed bus
- Expensive due to lack of semiconductor industry support and integration
 - A cold wallet can easily cost several hundred dollars
- Rely on "off-the-shelf" semiconductor chips in addition to a SE
 - Wrong cryptographic primitives, and fixed functionalities
 - Lack of "physical countermeasures" (PCM) shield
- Based on traditional/controversial cryptography primitives
 - Potential backdoors in NIST curves
- Use non-secure, unreliable flash memory
 - Susceptible to hardware hacking, vulnerable to harsh environment
 - Short shelf life (5-10 years max) due to discharge
- Limited computational power and memory
 - Use archaic single-key system
 - Cannot use sophisticated architectures such as multi-party computation (MPC)
- Hard to setup/use and centralized security
 - Steep learning curve, unforgiving product experience can trip up consumers by losing keys
 - SE requires strict NDA with proprietary/closed sources

Cramium SPU- A New Standard in Security

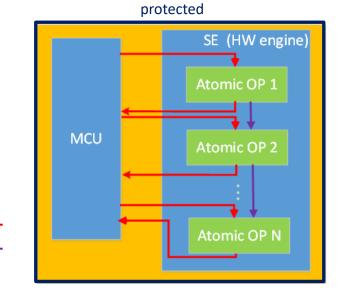
SPU is a crypto-native semiconductor chip that is developed from the ground-up for state-of-the-art security

Secure HW Acceleration and General Computing

HW acceleration (in 22nm) for general blockchain and emerging applications (e.g., MPC)


Feature examples (non-exhaustive list)

Public Key Crypto/Signature	Homomorphic Encryption	Hash
ECC (ECDSA, Schnorr, EdDSA, curves - Secp256k1, Ed25519/Ristretto, P-256/384), RSA	Paillier cryptosystem	RIPEMD160, SHA2, SHA3/Keccak, Blake2/3
Encryption	Authentication, Key Derivation	Key Agreement
Encryption AES	Authentication, Key Derivation HMAC, PBKDF2	Key Agreement ECDH, X25519


Modulo operations

Security of Hardware Secure Element with Flexibility of Software

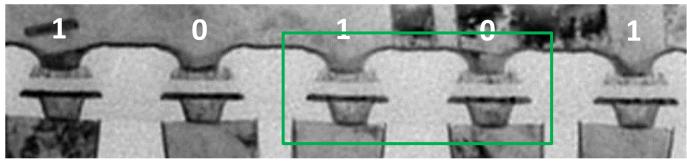
• SPU key slots can be designated to work in either of two modes

- Mode I
 - All work inside HW state machine
 - No visibility to M7 or AXI bus
 - This is similar to state-machine-based SE

- Mode II:
 - M7 can access accelerators, but handles intermediate product
 - Still under physical countermeasure shield
 - This is similar to core-based SE

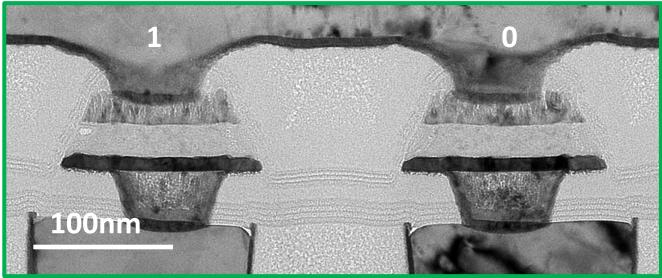
By providing both modes, SPU combines the security of HW-based SE with the flexibility of SW-based SE

ReRAM vs. Flash Memory

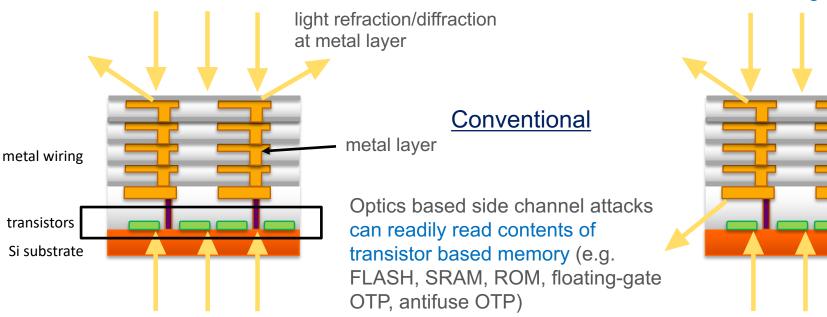

ReRAM is much better suited for NV storage in security hardware than the incumbent flash memory

			Flash (Charge-Based)		ReRA (Ion-ba		
	Security	×	Vulnerable to optical attacks	🗸 Canno	t be read by	y physical r	neans
	Permanence	×	Charge leaks continuously; unreliable and short-lived		on based, 1 at room tem	•	elf-life
	Integration	×	Cannot be integrated with advanced logic below 28nm	🗸 Can be	e integrated logic belov		nced
Floating gate Oxide Channel	electron loss due to defect ion contamination (e.g., N and tunneling	- COSCOS	Floating gate flash memory cell		Metal Ion	Based OFF	Top electroc Insulator Bottom elec
		Security (sec.or	nos esectos navas Teleforial	O Me	etal atom	THE REPAIRING AN ADDRESS AND	areas Rechlarget

12


ReRAM – Against Invasive Attacks

- ReRAM utilizes inherently stochastic electro-chemical ionic movement
 - o Invasive techniques (e.g. TEM) cannot effectively detect localized atomic level defects


PUF was programmed to 10101 and TEM was performed

No difference found under TEM between 1 and 0 bits (tested over 100s of TEM trials)

ReRAM – Against Optical Attacks

- Optics based side channel attacks (e.g. Photon Emission Analysis) are typically performed from the backside of a wafer
 - Light can easily go through Silicon substrate
- ReRAM is built in the middle metal layers → fundamentally disabling attacks from wafer backside

Imaging attacks do not work

ReRAM element Besides inherently being secure NVM (due to atomic-filament based), metal layers protect from side channel attacks further

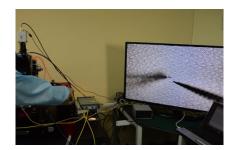
ReRAM

Physical Countermeasure (PCM)

- PCM: deployed throughout the entire layout that protect a chip from invasive /physical attack.
- This protects the logic upon which <u>all</u> logical security relies.

1. Physical Attacks (fib, probe, etc).

- Active Shield
- Security layout (redundant lines, dummy lines)
- Security Design (self-check, dynamic logic)


2. Fault Injection (laser, clock glitch, voltage glitch, EM/radiation, thermal)

- Glue Logic design (error coding, register mirror, write verify)
- Glue Cells (trigger cells) throughout chip
- Isolated clock
- Detectors (voltage, light...)

- 3. Side Channel (SPA, DPA, EM, ...)
- Algorithmic and implementation countermeasures
- Walkaround countermeasures (false operation, clock jitter, power balancing)

4. Other

- Strong/redundant lifecycle protection
- Multi-stage secure boot, multi-signature
- Memory protection (access control, encryption)
- Strong TRNG (multiple, self-checking)

TRNG – Multiple Entropy Sources

- TRNG is critical for the security of various cryptography primitives
- Cramium SPU provides multiple independent high quality entropy sources and an option to use external entropy source

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES	RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
generator is <rng_xor_test b11_p54.txt=""></rng_xor_test>	<pre>generator is <rng_xor_test xor_b1p55_b12p54_b11p54.txt=""></rng_xor_test></pre>
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST	C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
100 0	11 12 10 7 10 13 14 8 7 8 0.779188 100/100 Frequency 7 8 14 12 7 6 15 9 9 13 0.401199 98/100 BlockFrequency 10 13 9 8 12 9 8 12 10 9 0.971699 100/100 CumulativeSums 12 9 14 10 10 18 5 5 17 0.191687 99/100 CumulativeSums 12 9 14 10 10 15 9 11 0.699313 100/100 Runs 11 14 9 18 5 10 8 11 10 4 0.996578 99/100 LongestRun 13 11 10 7 9 11 13 12 7 0.816537 100/100 Rank 15 12 8 10 7 13 11 0.162606 97/100 NonOverlappingTemplate <t< td=""></t<>
100 0 100 0 100 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>Even mixing only "poor" The provided HTML Service Strengthered HTML S</td>	Even mixing only "poor" The provided HTML Service Strengthered HTML S
0 0 0 0 0 0 RandomExcursionsVariant 0 0 0 0 0 0 RandomExcursionsVariant 0 0 0 0 0 0 RandomExcursionsVariant 0 0 0 0 0 0 0 RandomExcursionsVariant	1 0 5 1 2 3 0 1 0 1 0.004301 14/14 RandomExcursionsVariant 0 2 3 2 1 1 2 1 0 2 0.350485 14/14 RandomExcursionsVariant 0 2 1 2 3 1 2 0 2 1 0.350485 14/14 RandomExcursionsVariant 0 1 1 3 2 2 1 2 1 1.0534146 14/14 RandomExcursionsVariant 0 3 1 3 0 0 1 2 3 1 0.0666882 14/14 RandomExcursionsVariant
95 2 1 1 0 1 0 0 0.000000 * 37/100 * Serial 9 7 12 7 13 4 12 10 0.419021 100/100 Serial 7 14 12 11 8 16 4 7 13 0.171867 98/100 LinearComplexity	8 9 13 15 5 10 13 5 0.289667 99/100 Serial 8 8 12 10 11 12 15 7 9 0.779188 99/100 Serial 8 12 9 7 9 15 9 0.834308 100/100 LinearComplexity

16

Summary

SPU provides a <u>flexible</u>, <u>programmable</u> platform with substantial <u>computing power</u> and large storage for any Distributed Key Management architecture and general secure embedded computing

SPU

Marcal

neasures

- All operation under umbrella of ٠ ONerful CPU Q PCM
- Fast MPC support on chip
- Complex signing on chip •

Customizable security • solutions

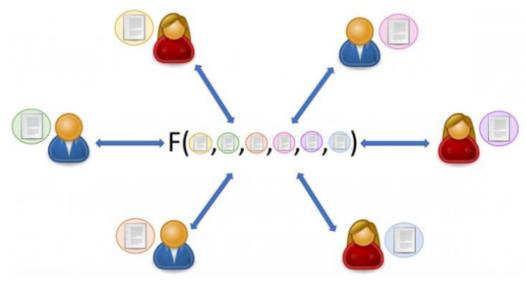
Security levels commensurate with enterprise-level requirements

Large Capacity Larger storage for keys and code than any SE

Questions & Suggestions?

• Any functionalities/crypto primitives you want us to implement?

Thank You


info@cramiumlabs.com

Backup

Secure Multi-Party Computation (MPC)

- MPC protocols enable mutually-distrusting parties to jointly perform a computation without revealing any party's secret
 - Benefits for digital asset applications: distributed key generation/management, protection against theft/hacking, no single point of failure
- However, MPC is typically deployed in enterprise level (e.g., work stations and servers) due to heavy computation requirement

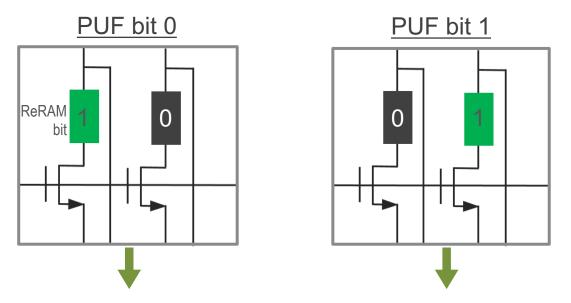
Multiple party jointly come up with the same verifiable results (image from esat.kuleuven.be)

ECDSA MPC Building Blocks – HW Acceleration

- Secret sharing & commitment schemes
 - VSS, (often) Pedersen's commitment scheme
- Additively homomorphic encryption
 - Paillier cryptosystem
- Zero Knowledge Proof (ZKP) or Proof of Knowledge
 - Sigma Protocol (interactive) or Fiat-Shamir heuristic (non-interactive): single secret and/or batched version. Examples:
 - Proof of knowledge on secrets/shares claimed
 - Range proof for Paillier key, message, nonce → SPU HW accelerated
 - Proof for well-formed Paillier

 \rightarrow SPU HW accelerated

→ SPU HW accelerated


ReRAM PUF - Randomness

- Tested over 50 dies (> 100Mb) produced in 28nm production line
- Passed all 15 randomness tests (NIST SP 800-22)

NIST SP 800-22		P-VALUE & CONCLUSION				
	STATISTICAL TEST	@ -40°C	@ 25°C	@ 125°C	Randomness Test	
1	Frequency	0.55454	0.34887	0.95901	All Passed	
2	BlockFrequency	0.69315	0.35536	0.68087	All Passed	
3	CumulativeSums	0.59252	0.85471	0.65172	All Passed	
4	Runs	0.97820	0.30119	0.77590	All Passed	
5	LongestRun	0.55609	0.85800	0.59172	All Passed	
6	Rank	0.59498	0.71568	0.48466	All Passed	
7	FFT	0.61093	0.72583	0.37018	All Passed	
8	NonOverlappingTemplate	0.45598	0.57902	0.73444	All Passed	
9	Serial	0.06801	0.69314	0.37313	All Passed	
10	OverlappingTemplate	0.30283	0.94631	0.08016	All Passed	
11	Universal	0.61906	0.45594	0.62797	All Passed	
12	ApproximateEntropy	0.35805	0.49439	0.58487	All Passed	
13	LinearComplexity	0.52631	0.21331	0.74771	All Passed	
14	RandomExcursions	0.72034	0.14126	0.54795	All Passed	
15	RandomExcursionsVariant	0.16661	0.01791	0.08311	All Passed	

ReRAM PUF – Against Power Analysis Attacks

- Fundamental safeguard against power analysis is to have CONSTANT power consumption regardless of PUF bit states
 - Furthermore, low current read (~uA) is beyond power analysis resolution
- Voltage differential ReRAM PUF allows complementary read (= constant power), mitigating power analysis attack

Constant current/power consumption regardless of PUF bit state w/o compromising fast sensing speed