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Introduction Design Space Accelerator Results

Extended GCD

Computes Bézout coefficients 𝒃𝒂, 𝒃𝒃 satisfying Bézout’s Identity

𝒃𝒂, 𝒃𝒃 : 𝒃𝒂∗ 𝑎# + 𝒃𝒃 ∗ 𝑏# = gcd 𝑎#, 𝑏#
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Extended GCD is widely used in cryptography

Computes Bézout coefficients 𝒃𝒂, 𝒃𝒃 satisfying Bézout’s Identity

𝒃𝒂, 𝒃𝒃 : 𝒃𝒂∗ 𝑎# + 𝒃𝒃 ∗ 𝑏# = gcd 𝑎#, 𝑏#

Modular Multiplicative Inverse
RSA

Elliptic Curve Cryptography
ElGamal Encryption

...
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There is an increasing need for faster XGCD

1. Modular Inversion for Curve25519 [Ber06]
• Constant-time XGCD faster than Fermat’s Little Theorem [BY19]

𝑥$% = 𝑥&$' (𝑚𝑜𝑑 𝑝)
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There is an increasing need for faster XGCD

1. Modular Inversion for Curve25519 [Ber06]
• Constant-time XGCD faster than Fermat’s Little Theorem [BY19]

2. Squaring binary quadratic forms over class groups [Wes19] as a VDF
• XGCD is the bottleneck

𝑥$% = 𝑥&$' (𝑚𝑜𝑑 𝑝)

𝑓 𝑥 = 𝑥'!in a class group
[BBBF18]
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There is an increasing need for faster XGCD

1. Modular Inversion for Curve25519 [Ber06]
• Constant-time XGCD faster than Fermat’s Little Theorem [BY19]

2. Squaring binary quadratic forms over class groups [Wes19] as a VDF
• XGCD is the bottleneck

𝑥$% = 𝑥&$' (𝑚𝑜𝑑 𝑝)

𝑓 𝑥 = 𝑥'!in a class group

255-bits, constant-time

1024-bits, not constant-time

[BBBF18]
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1024-bit XGCD255-bit constant-time XGCD
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[BY19]

[Por20]

[DdPM+21]

[ZTW21]
[AHAJS16] [ZST+20]

Better BetterNo ASIC points [ZST+20] is 2X 
faster than C++

Software FPGA ASIC

GNU C++ on Apple M1

isoperformance
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Current view of XGCD design space
Hardware

NCTCT

Target Platform

Algorithm

Application 
Requirements

[AHAJS16]
[ZST+20]
[ZTW21]

[DdPM+21]

CT = constant-time, NCT = not constant-time

÷
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We explore the broader design space
Software

−

NCTCT

÷

NCTCT

Hardware

−

NCTCT

÷

NCTCT

Target Platform

Algorithm

Application 
Requirements

[AHAJS16]
[ZST+20]
[ZTW21]

[DdPM+21][BY19][Por20]

CT = constant-time, NCT = not constant-time
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We explore the broader design space
Software

−

NCTCT

÷

NCTCT

Hardware

− ÷

NCTCT

Target Platform

Algorithm

Application 
Requirements

[AHAJS16]
[ZST+20]
[ZTW21]

[DdPM+21][BY19][Por20]

CT = constant-time, NCT = not constant-time

Unified

Our work
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Hardware allows for short iteration times

Target Platform

[DdPM+21][BY19][Por20] Our work

Number of Iterations

Constrained to ISA

From algorithm

Yes

From algorithm

No

Execution time = number of iterations ∗ iteration time

The control over iteration time in hardware opens the opportunity to 
accelerate simpler algorithms that require more iterations.

vsSoftware Hardware
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GCD Algorithms Comparison

Algorithm

[DdPM+21][BY19][Por20] Our work

GCD-preserving 
Transformation

a

gcd(𝑎, 𝑏)
= gcd(𝑎 − 𝑏, 𝑏)

gcd(𝑎, 𝑏)
= gcd 𝑎 𝑚𝑜𝑑 𝑏, 𝑏

vs− ÷

Stein [Ste67] Euclid (300 BC)
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GCD Algorithms Comparison

Algorithm

[DdPM+21][BY19][Por20] Our work

GCD-preserving 
Transformation

a

Worst-Case Iterations

gcd(𝑎, 𝑏)
= gcd(𝑎 − 𝑏, 𝑏)

387 *
1548 *

gcd(𝑎, 𝑏)
= gcd 𝑎 𝑚𝑜𝑑 𝑏, 𝑏

384
1542

vs− ÷

* Two-bit PM [YZ86]

1X difference for 255 bits
1X difference for 1024 bits

Stein [Ste67] Euclid (300 BC)
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GCD Algorithms Comparison

Algorithm

[DdPM+21][BY19][Por20] Our work

GCD-preserving 
Transformation

a

Worst-Case Iterations

Average Iterations

gcd(𝑎, 𝑏)
= gcd(𝑎 − 𝑏, 𝑏)

387 *
1548 *

300 *
1195 *

gcd(𝑎, 𝑏)
= gcd 𝑎 𝑚𝑜𝑑 𝑏, 𝑏

384
1542

189
598

vs− ÷

* Two-bit PM [YZ86]

1X difference for 255 bits
1X difference for 1024 bits

1.6X difference for 255 bits
2X difference for 1024 bits

Stein [Ste67] Euclid (300 BC)



Stanford University Kavya Sreedhar 16 / 42

Introduction Design Space Accelerator Results

From GCD to Extended GCD (XGCD)

• Compute Bézout coefficients satisfying Bézout Identity

𝒃𝒂, 𝒃𝒃 : 𝒃𝒂∗ 𝑎# + 𝒃𝒃 ∗ 𝑏# = gcd 𝑎#, 𝑏#

• Maintain these relations each cycle, where gcd 𝑎#, 𝑏# = gcd(𝑎, 𝑏)

𝑢 ∗ 𝑎# +𝑚 ∗ 𝑏# = 𝑎
𝑦 ∗ 𝑎# + 𝑛 ∗ 𝑏# = 𝑏
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Two-bit PM Critical Path

GCD update: 𝑎 = !"#
$

XGCD update: 𝑚 = ($)$*"
+
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Euclid critical path

Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

Compute 𝑞 ≤ ⌊!
"
⌋
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Computing the remainder

Euclid critical path

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

+𝑏

𝑏 ∗ 𝑞 5 ≪ 5
𝑏 ∗ 𝑞 4 ≪ 4
𝑏 ∗ 𝑞 3 ≪ 3
𝑏 ∗ 𝑞 2 ≪ 2
𝑏 ∗ 𝑞 1 ≪ 1
𝑏 ∗ 𝑞 0

𝑎

Multiplier

𝑎

𝑎 − 𝑞 ∗ 𝑏
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Computing the remainder

Euclid critical path

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

+𝑏

𝑏 ≪ 5 𝑜𝑟 0
𝑏 ≪ 4 𝑜𝑟 0
𝑏 ≪ 3 𝑜𝑟 0
𝑏 ≪ 2 𝑜𝑟 0
𝑏 ≪ 1 𝑜𝑟 0
𝑏 𝑜𝑟 0

𝑎

𝑎 − 𝑞 ∗ 𝑏Multiplier

𝑎
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Critical paths primarily require additions

• The fastest adder is a carry-save adder (CSA)
• Eliminates carry propagation, requiring 𝑂(1) delay
• Stores numbers in CSA form or redundant binary form

1 1 1 0
1 1 0 1 (a)
1 1 1 0 (b)
0 0 1 0 (c)

----------------
1 1 1 0 1

+

1 1 0 1 (a)
1 1 1 0 (b)
0 0 1 0 (c)

-------------------
0 0 0 1 sum

1 1 1 0 0 carry
-------------------
1 1 1 0 1

+

+
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CSACSA

Two-bit PM critical path: 3 CSA delays

𝑚𝑠𝑢𝑚

CSA
𝑥𝑠𝑢𝑚
𝑥𝑐𝑎𝑟𝑟𝑦

𝑦𝑠𝑢𝑚
𝑦𝑐𝑎𝑟𝑟𝑦

𝑚𝑐𝑎𝑟𝑟𝑦
𝑛𝑠𝑢𝑚
𝑛𝑐𝑎𝑟𝑟𝑦
𝑎(

𝑚 − 𝑛 − 𝑎(
4

𝑧𝑠𝑢𝑚
𝑧𝑐𝑎𝑟𝑟𝑦

CSACSACSA CSACSACSA

w

Data with bitwidth w
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Euclid critical path

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

𝑏

𝑎

Require 6-bit normal adds to 
get MSBs of 𝑎, 𝑏

log! 6 + 1 = 3 CSA delays



Stanford University Kavya Sreedhar 24 / 42

Introduction Design Space Accelerator Results

Euclid critical path: at least 9 CSA delays

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

Computing the remainder
𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

+𝑏

𝑏 ≪ 5 𝑜𝑟 0
𝑏 ≪ 4 𝑜𝑟 0
𝑏 ≪ 3 𝑜𝑟 0
𝑏 ≪ 2 𝑜𝑟 0
𝑏 ≪ 1 𝑜𝑟 0
𝑏 𝑜𝑟 0

Multiplier

𝑎

𝑎 − 𝑞 ∗ 𝑏

Add 14 values with CSAs≈ log"/! 14 = 6 CSA delays

Require 6-bit normal adds to 
get MSBs of 𝑎, 𝑏

log! 6 + 1 = 3 CSA delays

𝑎
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Two-bit PM is a faster starting point

• Two-bit PM critical path is at least 3X shorter than Euclid’s
• Two-bit PM iteration counts are at most 2X higher than Euclid’s

Two-bit PM with carry-save adders is the more promising starting 
point for hardware in the average and the worst-case.
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Our unified design with constant-time config

[DdPM+21][BY19][Por20] Our work

Approach

Termination Condition

Pad to worst-case cycle count

Cycle count equal to worst case

Reduce inputs until GCD

𝑎 == 0 or 𝑏 == 0

vsCT NCTApplication 
Requirements

Note that since 𝑎, 𝑏 are in CSA form, we do 
not know when they become 0
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We focus on the optimal design space
Software

−

NCTCT

÷

NCTCT

Hardware

− ÷

NCTCT

Target Platform

Algorithm

Application 
Requirements

[AHAJS16]
[ZST+20]
[ZTW21]

[DdPM+21][BY19][Por20]

CT = constant-time, NCT = not constant-time

Unified

Our work
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Accelerator Execution

Pre-
processing

Post-
processing

Iterations Loop 
(until termination condition is satisfied) 

4 cycles 8 cyclesWorst-case 1548 cycles for 1024-bit inputs 
and 387 cycles for 255-bit inputs  

Execution Time
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Accelerator Execution

Iterations Loop 
(until termination condition is satisfied) 

4 cycles 8 cyclesWorst-case 1548 cycles for 1024-bit inputs 
and 387 cycles for 255-bit inputs  

Execution Time

• Preserve results when shifting in CSA form

Pre-
processing

Post-
processing
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(until termination condition is satisfied) 

4 cycles 8 cyclesWorst-case 1548 cycles for 1024-bit inputs 
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Execution Time

• Preserve results when shifting in CSA form
• Allocate multiple cycles for processing steps
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Accelerator Execution

Iterations Loop 
(until termination condition is satisfied) 

4 cycles 8 cyclesWorst-case 1548 cycles for 1024-bit inputs 
and 387 cycles for 255-bit inputs  

Execution Time

• Preserve results when shifting in CSA form
• Allocate multiple cycles for processing steps
• Subsample 𝑎, 𝑏 for termination condition

Pre-
processing

Post-
processing
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Accelerator Execution

Iterations Loop 
(until termination condition is satisfied) 

4 cycles 8 cyclesWorst-case 1548 cycles for 1024-bit inputs 
and 387 cycles for 255-bit inputs  

Execution Time

• Preserve results when shifting in CSA form
• Allocate multiple cycles for processing steps
• Subsample 𝑎, 𝑏 for termination condition
• Minimize control overhead

Pre-
processing

Post-
processing
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Critical Path for ASIC in 16nm
255-bit XGCD 1024-bit XGCD

DFF clk to Q 45 40

Inverter 7 0

CSA 18 39

CSA 31 39

Buffer 13 0

CSA 30 34

Shift in CSA form 15 18

Late select muxes 18 18

Precomputing control 27 22

Setup Time 2 5

Total 204 215

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update 𝛿

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form: 
need 3 CSAs

CSA CSA CSA >> 2 input 
to mux

u
bm

3 inputs with u in CSA form: 
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form: 
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and 
   updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n, 
   with -am substituted for +bm for m, n
- The logic in just the first five update options 
   is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

𝛿

𝛿[MSB]

a[0]
b[0] Control

ADD

𝛿

next 𝛿

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if 
    cycle count is equal to worst-case
Otherwise: check if 
    a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am 
   are similarly calculated
   - 4am: shift am by 2
   - 5am: 2am + 3am
   - 6am: 4am + 2am
   - 7am: 4am + 3am
- Similar logic calculates
  multiples of bm 

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow
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Critical Path for ASIC in 16nm
255-bit XGCD 1024-bit XGCD

DFF clk to Q 45 40

Inverter 7 0

CSA 18 39

CSA 31 39

Buffer 13 0

CSA 30 34

Shift in CSA form 15 18

Late select muxes 18 18

Precomputing control 27 22

Setup Time 2 5

Clock Skew 16 41

Total 220 257

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update 𝛿

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form: 
need 3 CSAs

CSA CSA CSA >> 2 input 
to mux

u
bm

3 inputs with u in CSA form: 
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form: 
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and 
   updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n, 
   with -am substituted for +bm for m, n
- The logic in just the first five update options 
   is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

𝛿

𝛿[MSB]

a[0]
b[0] Control

ADD

𝛿

next 𝛿

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if 
    cycle count is equal to worst-case
Otherwise: check if 
    a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am 
   are similarly calculated
   - 4am: shift am by 2
   - 5am: 2am + 3am
   - 6am: 4am + 2am
   - 7am: 4am + 3am
- Similar logic calculates
  multiples of bm 

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow

These are post-layout numbers 
for a fabrication-ready design

255-bit XGCD: 4.5 GHz
1024-bit XGCD: 3.9 GHz
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255-bit Constant-time XGCD Comparison

0.1 1 10
Clock Frequency (GHz)

100

105

103

104

102

101

Cy
cl

e 
Co

un
t

[BY19]: 3.7

[Por20]: 2.7

[DdPM+21]: 41

Better
Ours: 0.089

* Times are in us

Our ASIC
• 31X faster than [Por20]
• First for constant-time 255-bit XGCD

Software FPGA ASIC
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255-bit Constant-time XGCD Comparison

0.1 1 10
Clock Frequency (GHz)

100

105

103

104

102

101

Cy
cl

e 
Co

un
t

[BY19]: 3.7

[Por20]: 2.7

[DdPM+21]: 41

Better
Ours: 0.089Ours: 0.902

* Times are in us

Our ASIC
• 31X faster than [Por20]
• First for constant-time 255-bit XGCD

Direct FPGA Comparison
Our design is 45X faster

Software FPGA ASIC
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1024-bit XGCD Comparison

Our ASIC
• 36X faster than software
• 8X faster than state-of-the-art ASIC

Clock Frequency (GHz)

100

105

103

104

102

101

Cy
cl

e 
Co

un
t

Better

0.01 0.1 1 10

[ZTW21]: 6.5

[AHAJS16]: 15 [ZST+20]: 6

Ours: 0.295

* Times are in us

GNU C++ on Apple M1: 10.7

Software FPGA ASIC
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1024-bit XGCD Comparison

Our ASIC
• 36X faster than software
• 8X faster than state-of-the-art ASIC

Direct FPGA Comparison
Our design is 2.7X faster

Clock Frequency (GHz)

100

105

103

104

102

101

Cy
cl

e 
Co
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[AHAJS16]: 15 [ZST+20]: 6

Ours: 5.6 Ours: 0.295

* Times are in us

GNU C++ on Apple M1: 10.7

Software FPGA ASIC
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Our design impacts application approaches

1. Supports progression in state of the art for Curve25519

2. Informs reasonable security levels for this type of VDF [ZZOTW23]

3. May be useful for other applications

https://github.com/kavyasreedhar/sreedhar-xgcd-hardware-ches2022

https://github.com/kavyasreedhar/sreedhar-xgcd-hardware-ches2022

