
Silicon Salon 3

A Fast Large-Integer Extended GCD Algorithm
and Hardware Design for Verifiable Delay

Functions and Modular Inversion
Kavya Sreedhar, Mark Horowitz, Christopher Torng

Stanford University
skavya@stanford.edu

January 18, 2023

mailto:skavya@stanford.edu

Stanford University Kavya Sreedhar 1 / 42

Introduction Design Space Accelerator Results

Extended GCD

Computes Bézout coefficients 𝒃𝒂, 𝒃𝒃 satisfying Bézout’s Identity

𝒃𝒂, 𝒃𝒃 : 𝒃𝒂∗ 𝑎# + 𝒃𝒃 ∗ 𝑏# = gcd 𝑎#, 𝑏#

Stanford University Kavya Sreedhar 2 / 42

Introduction Design Space Accelerator Results

Extended GCD is widely used in cryptography

Computes Bézout coefficients 𝒃𝒂, 𝒃𝒃 satisfying Bézout’s Identity

𝒃𝒂, 𝒃𝒃 : 𝒃𝒂∗ 𝑎# + 𝒃𝒃 ∗ 𝑏# = gcd 𝑎#, 𝑏#

Modular Multiplicative Inverse
RSA

Elliptic Curve Cryptography
ElGamal Encryption

...

Stanford University Kavya Sreedhar 3 / 42

Introduction Design Space Accelerator Results

There is an increasing need for faster XGCD

1. Modular Inversion for Curve25519 [Ber06]
• Constant-time XGCD faster than Fermat’s Little Theorem [BY19]

𝑥$% = 𝑥&$' (𝑚𝑜𝑑 𝑝)

Stanford University Kavya Sreedhar 4 / 42

Introduction Design Space Accelerator Results

There is an increasing need for faster XGCD

1. Modular Inversion for Curve25519 [Ber06]
• Constant-time XGCD faster than Fermat’s Little Theorem [BY19]

2. Squaring binary quadratic forms over class groups [Wes19] as a VDF
• XGCD is the bottleneck

𝑥$% = 𝑥&$' (𝑚𝑜𝑑 𝑝)

𝑓 𝑥 = 𝑥'!in a class group
[BBBF18]

Stanford University Kavya Sreedhar 5 / 42

Introduction Design Space Accelerator Results

There is an increasing need for faster XGCD

1. Modular Inversion for Curve25519 [Ber06]
• Constant-time XGCD faster than Fermat’s Little Theorem [BY19]

2. Squaring binary quadratic forms over class groups [Wes19] as a VDF
• XGCD is the bottleneck

𝑥$% = 𝑥&$' (𝑚𝑜𝑑 𝑝)

𝑓 𝑥 = 𝑥'!in a class group

255-bits, constant-time

1024-bits, not constant-time

[BBBF18]

Stanford University Kavya Sreedhar 6 / 42

Introduction Design Space Accelerator Results

0.1 1 10
Clock Frequency (GHz)

100

105

103

104

102

101

Cy
cl

e
Co

un
t

Better

Software FPGA ASIC

isoperformance

Stanford University Kavya Sreedhar 7 / 42

Introduction Design Space Accelerator Results

0.1 1 10
Clock Frequency (GHz)

255-bit constant-time XGCD

100

105

103

104

102

101

Cy
cl

e
Co

un
t

[BY19]

[Por20]

[DdPM+21]

BetterNo ASIC points

Software FPGA ASIC

isoperformance

Stanford University Kavya Sreedhar 8 / 42

Introduction Design Space Accelerator Results

0.1 1 10 0.01 0.1 1 10
Clock Frequency (GHz) Clock Frequency (GHz)

1024-bit XGCD255-bit constant-time XGCD

100

105

103

104

102

101

Cy
cl

e
Co

un
t

[BY19]

[Por20]

[DdPM+21]

[ZTW21]
[AHAJS16] [ZST+20]

Better BetterNo ASIC points [ZST+20] is 2X
faster than C++

Software FPGA ASIC

GNU C++ on Apple M1

isoperformance

Stanford University Kavya Sreedhar 9 / 42

Introduction Design Space Accelerator Results

Current view of XGCD design space
Hardware

NCTCT

Target Platform

Algorithm

Application
Requirements

[AHAJS16]
[ZST+20]
[ZTW21]

[DdPM+21]

CT = constant-time, NCT = not constant-time

÷

Stanford University Kavya Sreedhar 10 / 42

Introduction Design Space Accelerator Results

We explore the broader design space
Software

−

NCTCT

÷

NCTCT

Hardware

−

NCTCT

÷

NCTCT

Target Platform

Algorithm

Application
Requirements

[AHAJS16]
[ZST+20]
[ZTW21]

[DdPM+21][BY19][Por20]

CT = constant-time, NCT = not constant-time

Stanford University Kavya Sreedhar 11 / 42

Introduction Design Space Accelerator Results

We explore the broader design space
Software

−

NCTCT

÷

NCTCT

Hardware

− ÷

NCTCT

Target Platform

Algorithm

Application
Requirements

[AHAJS16]
[ZST+20]
[ZTW21]

[DdPM+21][BY19][Por20]

CT = constant-time, NCT = not constant-time

Unified

Our work

Stanford University Kavya Sreedhar 12 / 42

Introduction Design Space Accelerator Results

Hardware allows for short iteration times

Target Platform

[DdPM+21][BY19][Por20] Our work

Number of Iterations

Constrained to ISA

From algorithm

Yes

From algorithm

No

Execution time = number of iterations ∗ iteration time

The control over iteration time in hardware opens the opportunity to
accelerate simpler algorithms that require more iterations.

vsSoftware Hardware

Stanford University Kavya Sreedhar 13 / 42

Introduction Design Space Accelerator Results

GCD Algorithms Comparison

Algorithm

[DdPM+21][BY19][Por20] Our work

GCD-preserving
Transformation

a

gcd(𝑎, 𝑏)
= gcd(𝑎 − 𝑏, 𝑏)

gcd(𝑎, 𝑏)
= gcd 𝑎 𝑚𝑜𝑑 𝑏, 𝑏

vs− ÷

Stein [Ste67] Euclid (300 BC)

Stanford University Kavya Sreedhar 14 / 42

Introduction Design Space Accelerator Results

GCD Algorithms Comparison

Algorithm

[DdPM+21][BY19][Por20] Our work

GCD-preserving
Transformation

a

Worst-Case Iterations

gcd(𝑎, 𝑏)
= gcd(𝑎 − 𝑏, 𝑏)

387 *
1548 *

gcd(𝑎, 𝑏)
= gcd 𝑎 𝑚𝑜𝑑 𝑏, 𝑏

384
1542

vs− ÷

* Two-bit PM [YZ86]

1X difference for 255 bits
1X difference for 1024 bits

Stein [Ste67] Euclid (300 BC)

Stanford University Kavya Sreedhar 15 / 42

Introduction Design Space Accelerator Results

GCD Algorithms Comparison

Algorithm

[DdPM+21][BY19][Por20] Our work

GCD-preserving
Transformation

a

Worst-Case Iterations

Average Iterations

gcd(𝑎, 𝑏)
= gcd(𝑎 − 𝑏, 𝑏)

387 *
1548 *

300 *
1195 *

gcd(𝑎, 𝑏)
= gcd 𝑎 𝑚𝑜𝑑 𝑏, 𝑏

384
1542

189
598

vs− ÷

* Two-bit PM [YZ86]

1X difference for 255 bits
1X difference for 1024 bits

1.6X difference for 255 bits
2X difference for 1024 bits

Stein [Ste67] Euclid (300 BC)

Stanford University Kavya Sreedhar 16 / 42

Introduction Design Space Accelerator Results

From GCD to Extended GCD (XGCD)

• Compute Bézout coefficients satisfying Bézout Identity

𝒃𝒂, 𝒃𝒃 : 𝒃𝒂∗ 𝑎# + 𝒃𝒃 ∗ 𝑏# = gcd 𝑎#, 𝑏#

• Maintain these relations each cycle, where gcd 𝑎#, 𝑏# = gcd(𝑎, 𝑏)

𝑢 ∗ 𝑎# +𝑚 ∗ 𝑏# = 𝑎
𝑦 ∗ 𝑎# + 𝑛 ∗ 𝑏# = 𝑏

Stanford University Kavya Sreedhar 17 / 42

Introduction Design Space Accelerator Results

Two-bit PM Critical Path

GCD update: 𝑎 = !"#
$

XGCD update: 𝑚 = ($)$*"
+

Stanford University Kavya Sreedhar 18 / 42

Introduction Design Space Accelerator Results

Euclid critical path

Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

Compute 𝑞 ≤ ⌊!
"
⌋

Stanford University Kavya Sreedhar 19 / 42

Introduction Design Space Accelerator Results

Computing the remainder

Euclid critical path

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

+𝑏

𝑏 ∗ 𝑞 5 ≪ 5
𝑏 ∗ 𝑞 4 ≪ 4
𝑏 ∗ 𝑞 3 ≪ 3
𝑏 ∗ 𝑞 2 ≪ 2
𝑏 ∗ 𝑞 1 ≪ 1
𝑏 ∗ 𝑞 0

𝑎

Multiplier

𝑎

𝑎 − 𝑞 ∗ 𝑏

Stanford University Kavya Sreedhar 20 / 42

Introduction Design Space Accelerator Results

Computing the remainder

Euclid critical path

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

+𝑏

𝑏 ≪ 5 𝑜𝑟 0
𝑏 ≪ 4 𝑜𝑟 0
𝑏 ≪ 3 𝑜𝑟 0
𝑏 ≪ 2 𝑜𝑟 0
𝑏 ≪ 1 𝑜𝑟 0
𝑏 𝑜𝑟 0

𝑎

𝑎 − 𝑞 ∗ 𝑏Multiplier

𝑎

Stanford University Kavya Sreedhar 21 / 42

Introduction Design Space Accelerator Results

Critical paths primarily require additions

• The fastest adder is a carry-save adder (CSA)
• Eliminates carry propagation, requiring 𝑂(1) delay
• Stores numbers in CSA form or redundant binary form

1 1 1 0
1 1 0 1 (a)
1 1 1 0 (b)
0 0 1 0 (c)

1 1 1 0 1

+

1 1 0 1 (a)
1 1 1 0 (b)
0 0 1 0 (c)

0 0 0 1 sum

1 1 1 0 0 carry

1 1 1 0 1

+

+

Stanford University Kavya Sreedhar 22 / 42

Introduction Design Space Accelerator Results

CSACSA

Two-bit PM critical path: 3 CSA delays

𝑚𝑠𝑢𝑚

CSA
𝑥𝑠𝑢𝑚
𝑥𝑐𝑎𝑟𝑟𝑦

𝑦𝑠𝑢𝑚
𝑦𝑐𝑎𝑟𝑟𝑦

𝑚𝑐𝑎𝑟𝑟𝑦
𝑛𝑠𝑢𝑚
𝑛𝑐𝑎𝑟𝑟𝑦
𝑎(

𝑚 − 𝑛 − 𝑎(
4

𝑧𝑠𝑢𝑚
𝑧𝑐𝑎𝑟𝑟𝑦

CSACSACSA CSACSACSA

w

Data with bitwidth w

Stanford University Kavya Sreedhar 23 / 42

Introduction Design Space Accelerator Results

Euclid critical path

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

𝑏

𝑎

Require 6-bit normal adds to
get MSBs of 𝑎, 𝑏

log! 6 + 1 = 3 CSA delays

Stanford University Kavya Sreedhar 24 / 42

Introduction Design Space Accelerator Results

Euclid critical path: at least 9 CSA delays

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

Computing the remainder
𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

+𝑏

𝑏 ≪ 5 𝑜𝑟 0
𝑏 ≪ 4 𝑜𝑟 0
𝑏 ≪ 3 𝑜𝑟 0
𝑏 ≪ 2 𝑜𝑟 0
𝑏 ≪ 1 𝑜𝑟 0
𝑏 𝑜𝑟 0

Multiplier

𝑎

𝑎 − 𝑞 ∗ 𝑏

Add 14 values with CSAs≈ log"/! 14 = 6 CSA delays

Require 6-bit normal adds to
get MSBs of 𝑎, 𝑏

log! 6 + 1 = 3 CSA delays

𝑎

Stanford University Kavya Sreedhar 25 / 42

Introduction Design Space Accelerator Results

Two-bit PM is a faster starting point

• Two-bit PM critical path is at least 3X shorter than Euclid’s
• Two-bit PM iteration counts are at most 2X higher than Euclid’s

Two-bit PM with carry-save adders is the more promising starting
point for hardware in the average and the worst-case.

Stanford University Kavya Sreedhar 26 / 42

Introduction Design Space Accelerator Results

Our unified design with constant-time config

[DdPM+21][BY19][Por20] Our work

Approach

Termination Condition

Pad to worst-case cycle count

Cycle count equal to worst case

Reduce inputs until GCD

𝑎 == 0 or 𝑏 == 0

vsCT NCTApplication
Requirements

Note that since 𝑎, 𝑏 are in CSA form, we do
not know when they become 0

Stanford University Kavya Sreedhar 27 / 42

Introduction Design Space Accelerator Results

We focus on the optimal design space
Software

−

NCTCT

÷

NCTCT

Hardware

− ÷

NCTCT

Target Platform

Algorithm

Application
Requirements

[AHAJS16]
[ZST+20]
[ZTW21]

[DdPM+21][BY19][Por20]

CT = constant-time, NCT = not constant-time

Unified

Our work

Stanford University Kavya Sreedhar 28 / 42

Introduction Design Space Accelerator Results

Accelerator Execution

Pre-
processing

Post-
processing

Iterations Loop
(until termination condition is satisfied)

4 cycles 8 cyclesWorst-case 1548 cycles for 1024-bit inputs
and 387 cycles for 255-bit inputs

Execution Time

Stanford University Kavya Sreedhar 29 / 42

Introduction Design Space Accelerator Results

Accelerator Execution

Iterations Loop
(until termination condition is satisfied)

4 cycles 8 cyclesWorst-case 1548 cycles for 1024-bit inputs
and 387 cycles for 255-bit inputs

Execution Time

• Preserve results when shifting in CSA form

Pre-
processing

Post-
processing

Stanford University Kavya Sreedhar 30 / 42

Introduction Design Space Accelerator Results

Accelerator Execution

Iterations Loop
(until termination condition is satisfied)

4 cycles 8 cyclesWorst-case 1548 cycles for 1024-bit inputs
and 387 cycles for 255-bit inputs

Execution Time

• Preserve results when shifting in CSA form
• Allocate multiple cycles for processing steps

Pre-
processing

Post-
processing

Stanford University Kavya Sreedhar 31 / 42

Introduction Design Space Accelerator Results

Accelerator Execution

Iterations Loop
(until termination condition is satisfied)

4 cycles 8 cyclesWorst-case 1548 cycles for 1024-bit inputs
and 387 cycles for 255-bit inputs

Execution Time

• Preserve results when shifting in CSA form
• Allocate multiple cycles for processing steps
• Subsample 𝑎, 𝑏 for termination condition

Pre-
processing

Post-
processing

Stanford University Kavya Sreedhar 32 / 42

Introduction Design Space Accelerator Results

Accelerator Execution

Iterations Loop
(until termination condition is satisfied)

4 cycles 8 cyclesWorst-case 1548 cycles for 1024-bit inputs
and 387 cycles for 255-bit inputs

Execution Time

• Preserve results when shifting in CSA form
• Allocate multiple cycles for processing steps
• Subsample 𝑎, 𝑏 for termination condition
• Minimize control overhead

Pre-
processing

Post-
processing

Stanford University Kavya Sreedhar 33 / 42

Introduction Design Space Accelerator Results

Critical Path for ASIC in 16nm
255-bit XGCD 1024-bit XGCD

DFF clk to Q 45 40

Inverter 7 0

CSA 18 39

CSA 31 39

Buffer 13 0

CSA 30 34

Shift in CSA form 15 18

Late select muxes 18 18

Precomputing control 27 22

Setup Time 2 5

Total 204 215

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update 𝛿

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form:
need 3 CSAs

CSA CSA CSA >> 2 input
to mux

u
bm

3 inputs with u in CSA form:
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form:
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and
 updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n,
 with -am substituted for +bm for m, n
- The logic in just the first five update options
 is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

𝛿

𝛿[MSB]

a[0]
b[0] Control

ADD

𝛿

next 𝛿

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if
 cycle count is equal to worst-case
Otherwise: check if
 a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am
 are similarly calculated
 - 4am: shift am by 2
 - 5am: 2am + 3am
 - 6am: 4am + 2am
 - 7am: 4am + 3am
- Similar logic calculates
 multiples of bm

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow

Stanford University Kavya Sreedhar 34 / 42

Introduction Design Space Accelerator Results

Critical Path for ASIC in 16nm
255-bit XGCD 1024-bit XGCD

DFF clk to Q 45 40

Inverter 7 0

CSA 18 39

CSA 31 39

Buffer 13 0

CSA 30 34

Shift in CSA form 15 18

Late select muxes 18 18

Precomputing control 27 22

Setup Time 2 5

Clock Skew 16 41

Total 220 257

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update 𝛿

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form:
need 3 CSAs

CSA CSA CSA >> 2 input
to mux

u
bm

3 inputs with u in CSA form:
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form:
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and
 updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n,
 with -am substituted for +bm for m, n
- The logic in just the first five update options
 is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

𝛿

𝛿[MSB]

a[0]
b[0] Control

ADD

𝛿

next 𝛿

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if
 cycle count is equal to worst-case
Otherwise: check if
 a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am
 are similarly calculated
 - 4am: shift am by 2
 - 5am: 2am + 3am
 - 6am: 4am + 2am
 - 7am: 4am + 3am
- Similar logic calculates
 multiples of bm

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow

These are post-layout numbers
for a fabrication-ready design

255-bit XGCD: 4.5 GHz
1024-bit XGCD: 3.9 GHz

Stanford University Kavya Sreedhar 35 / 42

Introduction Design Space Accelerator Results

255-bit Constant-time XGCD Comparison

0.1 1 10
Clock Frequency (GHz)

100

105

103

104

102

101

Cy
cl

e
Co

un
t

[BY19]: 3.7

[Por20]: 2.7

[DdPM+21]: 41

Better
Ours: 0.089

* Times are in us

Our ASIC
• 31X faster than [Por20]
• First for constant-time 255-bit XGCD

Software FPGA ASIC

Stanford University Kavya Sreedhar 36 / 42

Introduction Design Space Accelerator Results

255-bit Constant-time XGCD Comparison

0.1 1 10
Clock Frequency (GHz)

100

105

103

104

102

101

Cy
cl

e
Co

un
t

[BY19]: 3.7

[Por20]: 2.7

[DdPM+21]: 41

Better
Ours: 0.089Ours: 0.902

* Times are in us

Our ASIC
• 31X faster than [Por20]
• First for constant-time 255-bit XGCD

Direct FPGA Comparison
Our design is 45X faster

Software FPGA ASIC

Stanford University Kavya Sreedhar 37 / 42

Introduction Design Space Accelerator Results

1024-bit XGCD Comparison

Our ASIC
• 36X faster than software
• 8X faster than state-of-the-art ASIC

Clock Frequency (GHz)

100

105

103

104

102

101

Cy
cl

e
Co

un
t

Better

0.01 0.1 1 10

[ZTW21]: 6.5

[AHAJS16]: 15 [ZST+20]: 6

Ours: 0.295

* Times are in us

GNU C++ on Apple M1: 10.7

Software FPGA ASIC

Stanford University Kavya Sreedhar 38 / 42

Introduction Design Space Accelerator Results

1024-bit XGCD Comparison

Our ASIC
• 36X faster than software
• 8X faster than state-of-the-art ASIC

Direct FPGA Comparison
Our design is 2.7X faster

Clock Frequency (GHz)

100

105

103

104

102

101

Cy
cl

e
Co

un
t

Better

0.01 0.1 1 10

[ZTW21]: 6.5

[AHAJS16]: 15 [ZST+20]: 6

Ours: 5.6 Ours: 0.295

* Times are in us

GNU C++ on Apple M1: 10.7

Software FPGA ASIC

Stanford University Kavya Sreedhar 39 / 42

Introduction Design Space Accelerator Results

Our design impacts application approaches

1. Supports progression in state of the art for Curve25519

Stanford University Kavya Sreedhar 40 / 42

Introduction Design Space Accelerator Results

Our design impacts application approaches

1. Supports progression in state of the art for Curve25519

2. Informs reasonable security levels for this type of VDF [ZZOTW23]

Stanford University Kavya Sreedhar 41 / 42

Introduction Design Space Accelerator Results

Our design impacts application approaches

1. Supports progression in state of the art for Curve25519

2. Informs reasonable security levels for this type of VDF [ZZOTW23]

3. May be useful for other applications

Stanford University Kavya Sreedhar 42 / 42

Introduction Design Space Accelerator Results

Our design impacts application approaches

1. Supports progression in state of the art for Curve25519

2. Informs reasonable security levels for this type of VDF [ZZOTW23]

3. May be useful for other applications

https://github.com/kavyasreedhar/sreedhar-xgcd-hardware-ches2022

https://github.com/kavyasreedhar/sreedhar-xgcd-hardware-ches2022

