Silicon Salon 3

A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay Functions and Modular Inversion

> Kavya Sreedhar, Mark Horowitz, Christopher Torng Stanford University skavya@stanford.edu

> > January 18, 2023

Extended GCD

Computes Bézout coefficients **b**_a, **b**_b satisfying Bézout's Identity

$$b_a, b_b : b_a * a_0 + b_b * b_0 = gcd(a_0, b_0)$$

Extended GCD is widely used in cryptography

Computes Bézout coefficients **b**_a, **b**_b satisfying Bézout's Identity

$$b_a, b_b : b_a * a_0 + b_b * b_0 = gcd(a_0, b_0)$$

Modular Multiplicative Inverse RSA Elliptic Curve Cryptography ElGamal Encryption :

There is an increasing need for faster XGCD

- 1. Modular Inversion for Curve25519 [Ber06]
 - Constant-time XGCD faster than Fermat's Little Theorem [BY19]

$$x^{-1} = x^{p-2} \pmod{p}$$

There is an increasing need for faster XGCD

- 1. Modular Inversion for Curve25519 [Ber06]
 - Constant-time XGCD faster than Fermat's Little Theorem [BY19]

 $x^{-1} = x^{p-2} \pmod{p}$

2. Squaring binary quadratic forms over class groups [Wes19] as a VDF [BBBF18] • XGCD is the bottleneck

$$f(x) = x^{2^{T}}$$
 in a class group

There is an increasing need for faster XGCD

- 1. Modular Inversion for Curve25519 [Ber06]
 - Constant-time XGCD faster than Fermat's Little Theorem [BY19]

255-bits, constant-time

$$x^{-1} = x^{p-2} \pmod{p}$$

2. Squaring binary quadratic forms over class groups [Wes19] as a VDF • XGCD is the bottleneck [BBBF18] $f(x) = x^{2^{T}}$ in a class group

Stanford University

Accelerator

ASIC

Results

Stanford University

Accelerator

Stanford University

We explore the broader design space

We explore the broader design space

Hardware allows for short iteration times

Target Platform	Software	VS Hardware
Number of Iterations	From algorithm	From algorithm
Constrained to ISA	Yes	No

Execution time = number of iterations * iteration time

The control over iteration time in hardware opens the opportunity to accelerate simpler algorithms that require more iterations.

GCD Algorithms Comparison

	Stein [Ste67]	Euclid (300 BC)
Algorithm		VS ÷
GCD-preserving	gcd(a, b)	gcd(a, b)
Iransformation	$= \gcd(a - b, b)$	$= \gcd(a \mod b, b)$

Introduction	Design Space	Accelerator	Results
GCD Algorit	* Two-bit PM [YZ86]		
Algorithm	Stein [Ste67] 	VS	clid (300 BC) ÷
GCD-preserving Transformation	gcd(a, b) = $gcd(a - b,$	b) = gc	gcd(a,b) d(a mod b,b)
Worst-Case Iterations	387 * 1548 *	1X difference for 255 bits 1X difference for 1024 bits	384 1542

Introduction	Design Space	Accelerator	Results
GCD Algorit	* Two-bit PM [YZ86]		
Algorithm	Stein [Ste67]	VS Euc	lid (300 BC) ÷
GCD-preserving Transformation	gcd(a,b) = gcd(a-b,	b) = gcc	gcd(a, b) d(a mod b, b)
Worst-Case Iterations	387 * 1548 *	1X difference for 255 bits 1X difference for 1024 bits	384 1542
Average Iterations	300 * 1195 *	1.6X difference for 255 bits 2X difference for 1024 bits	189 598
Stanford University	Kavya S	Freedhar	15 / 42

From GCD to Extended GCD (XGCD)

• Compute Bézout coefficients satisfying Bézout Identity

$$b_{a}, b_{b} : b_{a} * a_{0} + b_{b} * b_{0} = gcd(a_{0}, b_{0})$$

• Maintain these relations each cycle, where $gcd(a_0, b_0) = gcd(a, b)$

$$u * a_0 + m * b_0 = a$$

 $y * a_0 + n * b_0 = b$

Stanford University

Accelerator

Results

Two-bit PM Critical Path

GCD update: $a = \frac{a-b}{4}$ XGCD update: $m = \frac{m-n-a_m}{4}$

Stanford University

Kavya Sreedhar

17 / 42

Compute
$$q \leq \lfloor \frac{a}{b} \rfloor \longrightarrow$$
 Compute $q * b \longrightarrow$ Compute $a - q * b$

Compute
$$q \leq \lfloor \frac{a}{b} \rfloor \longrightarrow$$
 Compute $q * b \longrightarrow$ Compute $a - q * b$

Compute
$$q \leq \lfloor \frac{a}{b} \rfloor \longrightarrow$$
 Compute $q * b \longrightarrow$ Compute $a - q * b$

Critical paths primarily require additions

- The fastest adder is a carry-save adder (CSA)
 - Eliminates carry propagation, requiring O(1) delay
 - Stores numbers in CSA form or redundant binary form

Stanford University

Two-bit PM critical path: 3 CSA delays

Data with bitwidth w

Stanford University

Compute
$$q \leq \lfloor \frac{a}{b} \rfloor \longrightarrow$$
 Compute $q * b \longrightarrow$ Compute $a - q * b$

Require 6-bit normal adds to b get MSBs of a, b

 $[\log_2(6)] + 1 = 3$ CSA delays

Euclid critical path: at least 9 CSA delays

Compute
$$q \leq \lfloor \frac{a}{b} \rfloor \longrightarrow$$
 Compute $q * b \longrightarrow$ Compute $a - q * b$

Add 14 values with CSAs $\approx \left[\log_{3/2}(14)\right] = 6$ CSA delays

Two-bit PM is a faster starting point

- Two-bit PM critical path is at least 3X shorter than Euclid's
- Two-bit PM iteration counts are at most 2X higher than Euclid's

Two-bit PM with carry-save adders is the more promising starting point for hardware in the average and the worst-case.

1

Our unified design with constant-time config

Application Requirements	СТ	VS	NCT
Approach	Pad to worst-case cycl	e count Rec	luce inputs until GCD
Termination Condition	Cycle count equal to wo	orst case d	a == 0 or b == 0
	Note that si not kr	nce <i>a, b</i> are in CS now when they be	A form, we do ecome 0

We focus on the optimal design space

Pre-	Iterations Loop	Post-
processing	(until termination condition is satisfied)	processing
4 cycles	Worst-case 1548 cycles for 1024-bit inputs and 387 cycles for 255-bit inputs	8 cycles

Execution Time

Pre-	Iterations Loop	Post-
processing	(until termination condition is satisfied)	processing
4 cycles	Worst-case 1548 cycles for 1024-bit inputs and 387 cycles for 255-bit inputs	8 cycles

• Preserve results when shifting in CSA form

Pre-	Iterations Loop	Post-
processing	(until termination condition is satisfied)	processing
4 cycles	Worst-case 1548 cycles for 1024-bit inputs and 387 cycles for 255-bit inputs	8 cycles

- Preserve results when shifting in CSA form
- Allocate multiple cycles for processing steps

Pre-	Iterations Loop	Post-
processing	(until termination condition is satisfied)	processing
4 cycles	Worst-case 1548 cycles for 1024-bit inputs and 387 cycles for 255-bit inputs	8 cycles

- Preserve results when shifting in CSA form
- Allocate multiple cycles for processing steps
- Subsample *a*, *b* for termination condition

Pre-	Iterations Loop	Post-
processing	(until termination condition is satisfied)	processing
4 cycles	Worst-case 1548 cycles for 1024-bit inputs and 387 cycles for 255-bit inputs	8 cycles

- Preserve results when shifting in CSA form
- Allocate multiple cycles for processing steps
- Subsample *a*, *b* for termination condition
- Minimize control overhead

Critical Path for ASIC in 16nm

	255-bit XGCD	1024-bit XGCD
DFF clk to Q	45	40
Inverter	7	0
CSA	18	39
CSA	31	39
Buffer	13	0
CSA	30	34
Shift in CSA form	15	18
Late select muxes	18	18
Precomputing control	27	22
Setup Time	2	5
Total	204	215

Stanford University

Critical Path for ASIC in 16nm

	255-bit XGCD	1024-bit XGCD
DFF clk to Q	45	40
Inverter	7	0
CSA	18	39
CSA	31	39
Buffer	13	0
CSA	30	34
Shift in CSA form	15	18
Late select muxes	18	18
Precomputing control	27	22
Setup Time	2	5
Clock Skew	16	41
Total	220	257

These are post-layout numbers for a fabrication-ready design

255-bit XGCD: 4.5 GHz 1024-bit XGCD: 3.9 GHz

Stanford University

255-bit Constant-time XGCD Comparison

Stanford University

Kavya Sreedhar

35 / 42

255-bit Constant-time XGCD Comparison

Stanford University

Kavya Sreedhar

36 / 42

Accelerator

1024-bit XGCD Comparison

Our ASIC

FPGA

- 36X faster than software
- 8X faster than state-of-the-art ASIC

Stanford University

Kavya Sreedhar

37 / 42

ASIC

Accelerator

Results

1024-bit XGCD Comparison

Stanford University

Kavya Sreedhar

38 / 42

1. Supports progression in state of the art for Curve25519

- 1. Supports progression in state of the art for Curve25519
- 2. Informs reasonable security levels for this type of VDF [ZZOTW23]

- 1. Supports progression in state of the art for Curve25519
- 2. Informs reasonable security levels for this type of VDF [ZZOTW23]
- 3. May be useful for other applications

- 1. Supports progression in state of the art for Curve25519
- 2. Informs reasonable security levels for this type of VDF [ZZOTW23]
- 3. May be useful for other applications

https://github.com/kavyasreedhar/sreedhar-xgcd-hardware-ches2022