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Precursor

● What:
● Mobile device

● Why:
● Communication, 

authentication, wallet
● Who:

● "At risk" end users: high-value 
targets either politically or 
financially; devs/enthusiasts

● Global demographic (e.g., not 
just English-speaking)



  

Why a Device, and Not Just a Chip?
Your 
Phone ● Private keys are not your 

private matters
● Screens can be scraped, 

keyboards can be logged



  

The Secure I/O Problem
Your 
Phone



  

System-Level 
Diagram



  

Long-Term Arc

● Use the FPGA-based system to:
● Vet use cases
● Develop apps
● Test IP blocks
● Hammer out kernel integration
● Test things like the secure bootloader

● Eventually:
● This gets taped out into an ASIC



  

Security is a 
System, not a 

Component
The software supply chain matters.
See the “full talk”:
https://www.bunniestudios.com/blog/?p=6336
“From Boot to Root in One Hour”

https://www.bunniestudios.com/blog/?p=6336


  

But, We Only Have a Few Minutes:

To the SoC!



  

SoC-Level Diagram



  

Secure-Boot Relevant Items



  

Layout of Artifacts

● Bootloader sigcheck code:
https://github.com/betrusted-io/betrusted-soc/tree/main/boot/betrusted-boot/src

● Kernel loader sigcheck code: 
https://github.com/betrusted-io/xous-core/blob/main/loader/src/secboot.rs

kernelbootloader

https://github.com/betrusted-io/betrusted-soc/tree/main/boot/betrusted-boot/src
https://github.com/betrusted-io/xous-core/blob/main/loader/src/secboot.rs
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The Assembly Stub; then Pure Rust



  

Chain of Trust



  

A Brief Commentary on Threat Model
Before Getting into Key ROM Layout

● Most ASIC Secure Boots:
● Don't trust the user
● Ultimately trust the 

manufacturer and the supply 
chain

● Aim to enforce manufacturer 
or service provider-oriented 
policies upon the user

● Aim to prevent users from 
running arbitrary code on 
their devices

● Precursor:
● Doesn't trust the 

manufacturer
● Doesn't trust the supply 

chain
● Aims to empower users to 

control and protect their 
hardware

● Aims to complicate 
tampering and remote 
exploit persistence



  

Key ROM Layout
● Docs at 

https://github.com/betrusted-io/betrusted-wiki/wiki
/Secure-Boot-and-KEYROM-Layout

● Size set by S7 LUTROM 
granularity

● Global anti-rollback by 
repeatedly hashing keys (255-
code) times

● Private keys protected by 
password

https://github.com/betrusted-io/betrusted-wiki/wiki/Secure-Boot-and-KEYROM-Layout
https://github.com/betrusted-io/betrusted-wiki/wiki/Secure-Boot-and-KEYROM-Layout


  

Rust: Pros/Cons for Bootloaders

● Pros:
● Memory-safe language
● Strongly typed
● Good community support for 

cryptography (via 
cryptography.rs)

● Cons:
● Larger binary size

– Hardware crypto is a must to 
keep binary size down

– 32kiB for:
● HW init
● Ed25519 drivers
● Character graphics
● Minimal key management

● Steep learning curve
– See https://www.bunniestudios.com/blog/?p=6375



  

Self-Provisioning



  

Step 1: A Good TRNG

● If you don't get this right, 
nothing works.

● See https://betrusted.io/avalanche-noise 
for more

Avalanche Generator

Ring Oscillator X

ChaCha8

Dual FIFO output:
Kernel + user ports

Monitor

Monitor

(FIFO)

(ADC)

https://betrusted.io/avalanche-noise


  

Step 2: Generate Your Keys

if you pick the right cipher, this is "easy"



  

Step 3: Save the Keys

Crypto 
engine 
has no 
keys

Unencrypted 
bitstream in 
ROM

FPGA config 
engine has no key



  

Self-Provisioning and Sealing:
Generate Keys

Keys 
generated 
using on 
and off-
chip TRNGs



  

Self-Provisioning and Sealing:
Encrypt Boot Image

Keys are edited into bitstream 
by modifying BRAM contents 
during bitstream encryption

Crypto engine 
accesses ROM 
directly and 
encrypts 
bitstream



  

Self-Provisioning and Sealing:
Seal FPGA

Bitstream encryption key is  set
Readback disable is blown
AES-only boot is blown



  

Q&A
@bunniestudios

Presentation CC-BY-SA 3.0

Dev Chat:
https://matrix.to/#/#precursor.dev:matrix.org

With thanks to:

https://precursor.dev for more device info

Dev ChatHW info
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