

Precursor

Secure Bootloader and
Self-Provisioning

bunnie (@bunniestudios / twitter)
Silicon Salon - 2022

Precursor

● What:
● Mobile device

● Why:
● Communication,

authentication, wallet
● Who:

● "At risk" end users: high-value
targets either politically or
financially; devs/enthusiasts

● Global demographic (e.g., not
just English-speaking)

Why a Device, and Not Just a Chip?
Your
Phone ● Private keys are not your

private matters
● Screens can be scraped,

keyboards can be logged

The Secure I/O Problem
Your
Phone

System-Level
Diagram

Long-Term Arc

● Use the FPGA-based system to:
● Vet use cases
● Develop apps
● Test IP blocks
● Hammer out kernel integration
● Test things like the secure bootloader

● Eventually:
● This gets taped out into an ASIC

Security is a
System, not a

Component
The software supply chain matters.
See the “full talk”:
https://www.bunniestudios.com/blog/?p=6336
“From Boot to Root in One Hour”

https://www.bunniestudios.com/blog/?p=6336

But, We Only Have a Few Minutes:

To the SoC!

SoC-Level Diagram

Secure-Boot Relevant Items

Layout of Artifacts

● Bootloader sigcheck code:
https://github.com/betrusted-io/betrusted-soc/tree/main/boot/betrusted-boot/src

● Kernel loader sigcheck code:
https://github.com/betrusted-io/xous-core/blob/main/loader/src/secboot.rs

kernelbootloader

https://github.com/betrusted-io/betrusted-soc/tree/main/boot/betrusted-boot/src
https://github.com/betrusted-io/xous-core/blob/main/loader/src/secboot.rs

Layout of Artifacts

● Bootloader sigcheck code:
https://github.com/betrusted-io/betrusted-soc/tree/main/boot/betrusted-boot/src

● Kernel loader sigcheck code:
https://github.com/betrusted-io/xous-core/blob/main/loader/src/secboot.rs

kernelbootloader

https://github.com/betrusted-io/betrusted-soc/tree/main/boot/betrusted-boot/src
https://github.com/betrusted-io/xous-core/blob/main/loader/src/secboot.rs

The Assembly Stub; then Pure Rust

Chain of Trust

A Brief Commentary on Threat Model
Before Getting into Key ROM Layout

● Most ASIC Secure Boots:
● Don't trust the user
● Ultimately trust the

manufacturer and the supply
chain

● Aim to enforce manufacturer
or service provider-oriented
policies upon the user

● Aim to prevent users from
running arbitrary code on
their devices

● Precursor:
● Doesn't trust the

manufacturer
● Doesn't trust the supply

chain
● Aims to empower users to

control and protect their
hardware

● Aims to complicate
tampering and remote
exploit persistence

Key ROM Layout
● Docs at

https://github.com/betrusted-io/betrusted-wiki/wiki
/Secure-Boot-and-KEYROM-Layout

● Size set by S7 LUTROM
granularity

● Global anti-rollback by
repeatedly hashing keys (255-
code) times

● Private keys protected by
password

https://github.com/betrusted-io/betrusted-wiki/wiki/Secure-Boot-and-KEYROM-Layout
https://github.com/betrusted-io/betrusted-wiki/wiki/Secure-Boot-and-KEYROM-Layout

Rust: Pros/Cons for Bootloaders

● Pros:
● Memory-safe language
● Strongly typed
● Good community support for

cryptography (via
cryptography.rs)

● Cons:
● Larger binary size

– Hardware crypto is a must to
keep binary size down

– 32kiB for:
● HW init
● Ed25519 drivers
● Character graphics
● Minimal key management

● Steep learning curve
– See https://www.bunniestudios.com/blog/?p=6375

Self-Provisioning

Step 1: A Good TRNG

● If you don't get this right,
nothing works.

● See https://betrusted.io/avalanche-noise
for more

Avalanche Generator

Ring Oscillator X

ChaCha8

Dual FIFO output:
Kernel + user ports

Monitor

Monitor

(FIFO)

(ADC)

https://betrusted.io/avalanche-noise

Step 2: Generate Your Keys

if you pick the right cipher, this is "easy"

Step 3: Save the Keys

Crypto
engine
has no
keys

Unencrypted
bitstream in
ROM

FPGA config
engine has no key

Self-Provisioning and Sealing:
Generate Keys

Keys
generated
using on
and off-
chip TRNGs

Self-Provisioning and Sealing:
Encrypt Boot Image

Keys are edited into bitstream
by modifying BRAM contents
during bitstream encryption

Crypto engine
accesses ROM
directly and
encrypts
bitstream

Self-Provisioning and Sealing:
Seal FPGA

Bitstream encryption key is set
Readback disable is blown
AES-only boot is blown

Q&A
@bunniestudios

Presentation CC-BY-SA 3.0

Dev Chat:
https://matrix.to/#/#precursor.dev:matrix.org

With thanks to:

https://precursor.dev for more device info

Dev ChatHW info

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

