

Reflections on
F/OSS Design + Closed PDK:

If You Can't Trust the Transistors,
Why Bother With Anything Else?

bunnie (@bunniestudios / twitter)
Silicon Salon - 2023

So You Care about Security,
and You Want to Trust your Hardware.

● Kerckhoffs's principle: avoid
security through obscurity

● So, Open all the things!
– Protocols/Apps
– Kernel
– Firmware/bootloaders
– Circuit boards
– Chips
– RTL
– PDK
– Masks
– Chip fabs...

Alternatively Stated:
What If You're Trapped in a Simulation?

● If your BIOS is rooted, does it
matter that your kernel is
trusted?

● If your motherboard has a
JTAG implant, does it matter
that your BIOS is signed?

● If your CPU has patched
microcode, does it matter that
your motherboard is trusted?

● If your CPU microcode is
signed, does it matter if the
chip design is back-doored?

The Turtles Stop Here:
Open PDK?

In Hardware, Checked Designs
Does Not Mean Checked Devices

● Trust cannot be transfered
from design to device via cloud

● There is no "hash function" +
"digital signature" for
hardware

● (At least not yet)

So, I am Worried about Backdoors in Chips:
Inspect All the Chips, Down to the Transistor?

I Have Bad News

● There are no "silver bullets" in hardware security
● Formally verification has no essential link with security
● Open source has no essential link with trustability
● Physical inspection has limits
● Yesterday's inspection does not ward off today's "evil maid"
● Trusted fabs are meaningless with untrusted couriers
● Audits cost money
● Certifications are a business, not a public service

Hardware Security is a Cost-Benefit Tradeoff

● How much does it cost to break the
security?

● How much do you lose if the security
is broken?

● Accurately asesssing these costs is
fundamental!

Why Cost Assesment is Hard:
Fear is Proportional to Uncertainty

A Possibly More Accurate View
of Attack Surface Size

The Impact of Closed Hardware Extends Beyond
the Surface of Hardware

The Effect of Moving the Analytical Barrier
Down the Stack

RTL-Level F/OSS Design, on a Closed PDK
Pros & Cons

● Pros
● Reduction of software bugs

assisted by analysis of
hardware design

● Faster & analytical patching
of hardware bugs

● Bug or backdoor? Now we
can know

● Some improvement in
physical inspectability (gross
morphology is constrained)

● Cons
● Can't be sure the transistors

match the RTL
● No improvement in

analytical difficulty for
sidechannel/direct readout
vectors

● Does not improve transistor-
level inspection

● Still standing on turtles

If All Things Were Equal:
Of Course, a Fully Open PDK Is Better

● The basic strawman goes:
● Security is important
● Reticles are huge
● Just fab your security chip

on 130/180nm open PDK
processes, and use a full
reticle

Problem #1: Physics, Form Factor, Economics
● Assume:

● Same RAM/ROM capacity
● Same microarchitecture

● Cost difference
● 20x: $5 chip -> $100 chip

● Speed or power difference
● 5-10x(?) power/speed

scaling differential
● Form factor

● A 19x19mm chip can't fit in
a smartcard

19mm

19mm

4mm

4mm

28nm 130nm

Problem #2: Not all PDKs are Equal

● The current 130/180nm PDKs
come with limitations:

● Poor SRAM support
● Few analog blocks
● Effort, time & validation still

to be done to optimize PDK
for prime-time

(credit: Sean Xobs Cross)
2.92x3.52mm GF180
8k RAM (left)
Register files (right)

Problem #3: Opportunity Costs
● Outside of the security research field:

● Security is a barrier to adoption
● Hard to up-sell as a feature

● Security tends to settle around standards
● e.g. "Don't roll your own"
● First-movers have the ability to set de-facto standards around

closed-source/proprietary primitives
– e.g. ARM microarch + MPU
– Microarchitectural lock-in is real: x86 vs the world

So Which Is Better?

● Top-down approach:
● OS
● API
● RTL
● PDK

● Bottom-up approach:
● PDK
● RTL
● API
● OS

Porque No Los Dos?

Q&A
@bunniestudios

@bunnie@treehouse.systems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

