Reflections on F/OSS Design + Closed PDK:

If You Can't Trust the Transistors, Why Bother With Anything Else?

bunnie (@bunniestudios / twitter) Silicon Salon - 2023

So You Care about Security, and You Want to Trust your Hardware.

- Kerckhoffs's principle: avoid security through obscurity
 - So, Open all the things!
 - Protocols/Apps
 - Kernel
 - Firmware/bootloaders
 - Circuit boards
 - Chips
 - RTL
 - PDK
 - Masks
 - Chip fabs...

Alternatively Stated: What If You're Trapped in a Simulation?

- If your BIOS is rooted, does it matter that your kernel is trusted?
- If your motherboard has a JTAG implant, does it matter that your BIOS is signed?
- If your CPU has patched microcode, does it matter that your motherboard is trusted?
- If your CPU microcode is signed, does it matter if the chip design is back-doored?

The Turtles Stop Here: Open PDK?

In Hardware, Checked Designs Does Not Mean Checked Devices

- Trust cannot be transfered from design to device via cloud
- There is no "hash function" + "digital signature" for hardware
- (At least not yet)

So, I am Worried about Backdoors in Chips: Inspect All the Chips, Down to the Transistor?

Figure 2 | PXCT of detector ASIC chip. a, 3D rendering of the PCXT tomogram with identified elements. The yellow triangle indicates a manufacturing fault in the Ti layer. The Al layer in the region of the red triangle shows variances in thickness causing a waviness of the Ti layer

on top. Via, through-layer connector. **b**, Axial section across the second lowest layer, which contains the transistor gates; the grey scale (top right) represents electron density (in $e^{-\hat{A}-3}$). The corresponding layer from the design file is shown as the partial overlay in yellow.

I Have Bad News

- There are no "silver bullets" in hardware security
 - Formally verification has no essential link with security
 - Open source has no essential link with trustability
 - Physical inspection has limits
 - Yesterday's inspection does not ward off today's "evil maid"
 - Trusted fabs are meaningless with untrusted couriers
 - Audits cost money
 - Certifications are a business, not a public service

Hardware Security is a Cost-Benefit Tradeoff

- How much does it cost to break the security?
- How much do you lose if the security is broken?
- Accurately asesssing these costs is fundamental!

Why Cost Assesment is Hard: Fear is Proportional to Uncertainty

A Possibly More Accurate View of Attack Surface Size

The Impact of Closed Hardware Extends Beyond the Surface of Hardware

The Effect of Moving the Analytical Barrier Down the Stack

RTL-Level F/OSS Design, on a Closed PDK Pros & Cons

• Pros

- Reduction of software bugs assisted by analysis of hardware design
- Faster & analytical patching of hardware bugs
- Bug or backdoor? Now we can know
- Some improvement in physical inspectability (gross morphology is constrained)

• Cons

- Can't be sure the transistors match the RTL
- No improvement in analytical difficulty for sidechannel/direct readout vectors
- Does not improve transistorlevel inspection
- Still standing on turtles

If All Things Were Equal: Of Course, a Fully Open PDK Is Better

- The basic strawman goes:
 - Security is important
 - Reticles are huge
 - Just fab your security chip on 130/180nm open PDK processes, and use a full reticle

Problem #1: Physics, Form Factor, Economics

- Assume:
 - Same RAM/ROM capacity
 - Same microarchitecture
- Cost difference
 - 20x: \$5 chip -> \$100 chip
- Speed or power difference
 - 5-10x(?) power/speed scaling differential
- Form factor
 - A 19x19mm chip can't fit in a smartcard

Problem #2: Not all PDKs are Equal

- The current 130/180nm PDKs come with limitations:
 - Poor SRAM support
 - Few analog blocks
 - Effort, time & validation still to be done to optimize PDK for prime-time

2.92x3.52mm GF180 8k RAM (left) Register files (right) (credit: Sean Xobs Cross)

Problem #3: Opportunity Costs

- Outside of the security research field:
 - Security is a barrier to adoption
 - Hard to up-sell as a feature
- Security tends to settle around standards
 - e.g. "Don't roll your own"
 - First-movers have the ability to set de-facto standards around closed-source/proprietary primitives
 - e.g. ARM microarch + MPU
 - Microarchitectural lock-in is real: x86 vs the world

So Which Is Better?

- Bottom-up approach:
 - PDK
 - RTL
 - API
 - OS

- Top-down approach:
 - OS
 - API
 - RTL
 - PDK

Porque No Los Dos?

