Silicon Salon 3

A Fast Large-Integer Extended GCD Algorithm
and Hardware Design for Verifiable Delay
Functions and Modular Inversion

Kavya Sreedhar, Mark Horowitz, Christopher Torng
Stanford University
skavya@stanford.edu

January 18, 2023

mailto:skavya@stanford.edu

Introduction Design Space Accelerator Results

Extended GCD

Computes Bézout coefficients b, b;, satisfying Bézout’s Identity

ba, by : bgx ag + by x by = ged(ayg, by)

Stanford University Kavya Sreedhar 1/42

Introduction Design Space Accelerator Results

Extended GCD is widely used in cryptography
Computes Bézout coefficients b, b;, satisfying Bézout’s Identity

ba: bb : ba* ap + bb * bO — ng(aO; bO)

Modular Multiplicative Inverse
RSA
Elliptic Curve Cryptography
ElGamal Encryption

Stanford University Kavya Sreedhar 2 /42

Introduction Design Space Accelerator Results

here is an increasing need for faster XGCD

1. Modular Inversion for Curve25519 [Ber06]
e Constant-time XGCD faster than Fermat’s Little Theorem [BY19]

x~1 = xP~% (mod p)

Stanford University Kavya Sreedhar 3/42

Introduction Design Space Accelerator Results

here is an increasing need for faster XGCD

1. Modular Inversion for Curve25519 [Ber06]
e Constant-time XGCD faster than Fermat’s Little Theorem [BY19]

x~1 = xP~% (mod p)

2. Squaring binary quadratic forms over class groups [Wes19] as a VDF

 XGCD is the bottleneck . [BBBF18]
f(x) = x% in aclass group

Stanford University Kavya Sreedhar 4 /42

Introduction Design Space Accelerator Results

here is an increasing need for faster XGCD

1. Modular Inversion for Curve25519 [Ber06]
e Constant-time XGCD faster than Fermat’s Little Theorem [BY19]

-1 _ ,p-2
255-bits, constant-time X xP~“ (mod p)

2. Squaring binary quadratic forms over class groups [Wes19] as a VDF

 XGCD is the bottleneck . [BBBF18]
f(x) = x% in aclass group

1024-bits, not constant-time

Stanford University Kavya Sreedhar 5/42

Cycle Count

Introduction

10°
104
10°
102
101

10°
0.1

Design Space

Better

1

10

1

Clock Frequency (GHz)

Stanford University

@ software

& FPGA

Kavya Sreedhar

Accelerator

A ASIC

Results

6/42

Cycle Count

Introduction Design Space

255-bit constant-time XGCD

[DdPM+21] [BY19]

No ASIC points Better

1

0.1 1 10
Clock Frequency (GHz)

@ Software & FPGA

Stanford University Kavya Sreedhar

Accelerator

A ASIC

Results

7/42

Cycle Count

Introduction Design Space Accelerator Results

255-bit constant-time XGCD 1024-bit XGCD

10°

. [DAPM+21] [BY19] GNU C++ on Apple M1
10

A [2ST+20]
103
[ZTW21]
102
101 No ASIC points Better [ZST+20] is 2X Better
faster than C++
o < <
0.1 1 10 0.01 0.1 1 10
Clock Frequency (GHz) Clock Frequency (GHz)
@ software & FPGA A ASIC

Stanford University Kavya Sreedhar 8/42

Introduction Design Space Accelerator Results

Current view of XGCD design space

Target Platform Hardware

Algorithm =
AppllFatlon T NCT
Requirements
[DdPM+21] [AHAJS16]
[ZST+20]
CT = constant-time, NCT = not constant-time [ZTW21]

Stanford University Kavya Sreedhar 9/42

Introduction Design Space Accelerator Results

We explore the broader design space

Target Platform Software Hardware

Algorithm — + — —
Application
. CT NCT CT NCT CT NCT CT NCT
Requirements
[Por20] [BY19] [DdPM+21] [AHAJS16]
[ZST+20]
CT = constant-time, NCT = not constant-time [ZTW21]

Stanford University Kavya Sreedhar 10/ 42

Introduction Design Space Accelerator Results

We explore the broader design space

Target Platform Software Hardware

Algorithm — + — —
Application —
. CT NCT CT NCT Unified CT NCT
Requirements
[Por20] [BY19] Our work [DdPM+21] [AHAJS16]
[ZST+20]
CT = constant-time, NCT = not constant-time [ZTW21]

Stanford University Kavya Sreedhar 11/ 42

Introduction Design Space Accelerator Results

Hardware allows for short iteration times

Target Platform Software VS Hardware
Number of Iterations From algorithm From algorithm
Constrained to ISA Yes No

Execution time = number of iterations * iteration time

The control over iteration time in hardware opens the opportunity to
accelerate simpler algorithms that require more iterations.

Stanford University Kavya Sreedhar 12 /42

Introduction Design Space Accelerator Results

GCD Algorithms Comparison

Stein [Ste67] Euclid (300 BC)
Algorithm — VS +
GCD-preserving gcd(a, b) gcd(a, b)
Transformation = gcd(a — b, b) = gcd(a mod b, b)

Stanford University Kavya Sreedhar 13 /42

Introduction Design Space Accelerator Results

* Two-bit PM [YZ86]

GCD Algorithms Comparison

Stein [Ste67] Euclid (300 BC)
Algorithm — VS +
GCD-preserving gcd(a, b) gcd(a, b)
Transformation = gcd(a — b, b) = gcd(a mod b, b)
Worst-Case |terations 387 * 1X difference for 255 bits 384
1548 * 1X difference for 1024 bits 1542

Stanford University Kavya Sreedhar 14 / 42

Introduction

GCD Algorithms Comparison

Algorithm

GCD-preserving
Transformation

Design Space Accelerator Results

* Two-bit PM [YZ86]

Stein [Ste67] Euclid (300 BC)
— VS -
gcd(a, b) gcd(a, b)
= gcd(a — b, b) = gcd(a mod b, b)

Worst-Case lterations

387 * 1X difference for 255 bits 384
1548 * 1X difference for 1024 bits 1542

Average Iterations

Stanford University

300 * 1.6X difference for 255 bits 189
1195 * 2X difference for 1024 bits 508

Kavya Sreedhar 15/ 42

Introduction Design Space Accelerator Results

From GCD to Extended GCD (XGCD)

 Compute Bézout coefficients satisfying Bézout Identity

ba: bb : ba* ap + bb * bO — ng(aO; bO)

* Maintain these relations each cycle, where gcd(ay, by) = gcd(a, b)

U * dg +mx* b
Y *ag +n* by

a
b

Stanford University Kavya Sreedhar 16 /42

Introduction Design Space Accelerator Results

wo-bit PM Critical Path

a—b
GCD update: a = 2
XGCD update: m = m_r;_am

Stanford University Kavya Sreedhar 17 / 42

Introduction Design Space Accelerator Results

Euclid critical path

Compute g < [%J — Computeqg *b — Computea —q * b

)

) Get 6 T L

MSBs | 6

v

Stanford University Kavya Sreedhar 18 /42

Introduction Design Space Accelerator Results

Euclid critical path

Compute g < [%J — Computeqg *b — Computea —q * b

a, Computing the remainder

Get6 | 2. q (b q[5]) « 5| —

b MSBs 6 LUT (b*q4‘) L4l —
] Multiplier (bxql3]) « 3] — a—qx*b
. PUEE (b« q2D) « 2| —| & .

b (b*q[l) « 1| —

(b=q[0]) | —

a —>

Stanford University Kavya Sreedhar 19 /42

Introduction Design Space Accelerator Results

Euclid critical path

Compute g < [%J — Computeqg *b — Computea —q * b

a, Computing the remainder

Get 6 b«<50rQ0 | —

)

b 6 LUT — b<4o0r0Q | —

MSBs R
> .. b« 3o0r0
a—qx*b
R Multiplier b« 2or0 N q X
b b<Klor0Q | —

bor0 —

Stanford University Kavya Sreedhar 20/ 42

Introduction Design Space Accelerator

Critical paths primarily require additions

* The fastest adder is a carry-save adder (CSA)
* Eliminates carry propagation, requiring O (1) delay
e Stores numbers in CSA form or redundant binary form

1101 (a)
1110
A B
1101 (a) +(1)(1)18$)) Vo
+ 1110(b) S 1-bit
0010 (c) Cout< Full <—Cin
________________ + 0001sum Adder
11101 11100 carry ¢
___________________ S
11101

Stanford University Kavya Sreedhar

Results

21 /42

Introduction Design Space Accelerator Results

wo-bit PM critical path: 3 CSA delays

m-—n-—a,

4
W /411
Moym —— X sum /1' y a
Mearry —4— CSA X carry] A Zsum
nsum +’ H > CSA yCClT'Ty : CSA +>Z
Nearry > - :+>carry
287
Data with bitwidth w
22 /42

Stanford University Kavya Sreedhar

Introduction Design Space Accelerator Results

Euclid critical path

Compute g < [%J — Computeqg *b — Computea —q * b

a#
6
Get 6 > q
LUT |
b | MsBs| 6
b

Require 6-bit normal adds to
get MSBs of a, b

|log,(6)] + 1 = 3 CSA delays

Stanford University Kavya Sreedhar 23 /42

Introduction Design Space Accelerator Results

Euclid critical path: at least 9 CSA delays

Compute g < [%J — Computeqg *b — Computea —q * b

a, Computing the remainder
Get 6 y , q b«<50r0 | —
b LUt b<4or0 | —
HiRie 2N b«<3o0r(Q | —
] Multiplier or a—qx*b
> b<2o0r0 | —| + >
Require 6-bit normal adds to b b<lor0 | —
get MSBs of a, b b or 0 —
a e

[logz(6)] +1 =3 CSAdelays Aqq 14 values with CSAs ~ llogs,,(14)| = 6 CSA delays

Stanford University Kavya Sreedhar 24 [/ 42

Introduction Design Space Accelerator Results

wo-bit PM is a faster starting point

* Two-bit PM critical path is at least 3X shorter than Euclid’s
* Two-bit PM iteration counts are at most 2X higher than Euclid’s

Two-bit PM with carry-save adders is the more promising starting
point for hardware in the average and the worst-case.

Stanford University Kavya Sreedhar 25/ 42

Introduction Design Space Accelerator Results

Our unified design with constant-time config

Aoplicati
ppiication cT Vs NCT
Requirements
Approach Pad to worst-case cycle count Reduce inputs until GCD
Termination Condition | Cycle count equal to worst case a==0orb==0

Note that since a, b are in CSA form, we do
not know when they become 0

Stanford University Kavya Sreedhar 26 /42

Introduction Design Space Accelerator Results

We focus on the optimal design space

Target Platform Software Hardware

Algorithm — + — —
Application —
. CT NCT CT NCT Unified CT NCT
Requirements
[Por20] [BY19] Our work [DdPM+21] [AHAJS16]
[ZST+20]
CT = constant-time, NCT = not constant-time [ZTW21]

Stanford University Kavya Sreedhar 27 [42

Introduction Design Space Accelerator

Accelerator Execution

Results

Execution Time

>

Pre- Iterations Loop Post-
processing (until termination condition is satisfied) processing
4 cycles Worst-case 1548 cycles for 1024-bit inputs 8 cycles
and 387 cycles for 255-bit inputs
Stanford University Kavya Sreedhar 28 /42

Introduction Design Space Accelerator Results

Accelerator Execution

Execution Time
>

Pre- Iterations Loop Post-
processing (until termination condition is satisfied) processing

4 cycles Worst-case 1548 cycles for 1024-bit inputs 8 cycles
and 387 cycles for 255-bit inputs

* Preserve results when shifting in CSA form

Stanford University Kavya Sreedhar 29 /42

Introduction Design Space Accelerator Results

Accelerator Execution

Execution Time
>

Pre- Iterations Loop Post-
processing (until termination condition is satisfied) processing

4 cycles Worst-case 1548 cycles for 1024-bit inputs 8 cycles
and 387 cycles for 255-bit inputs

* Preserve results when shifting in CSA form
* Allocate multiple cycles for processing steps

Stanford University Kavya Sreedhar 30/42

Introduction Design Space Accelerator Results

Accelerator Execution

Execution Time
>

Pre- Iterations Loop Post-
processing (until termination condition is satisfied) processing

4 cycles Worst-case 1548 cycles for 1024-bit inputs 8 cycles
and 387 cycles for 255-bit inputs

* Preserve results when shifting in CSA form
* Allocate multiple cycles for processing steps
 Subsample a, b for termination condition

Stanford University Kavya Sreedhar 31/42

Introduction Design Space Accelerator Results

Accelerator Execution Execution Time

>

Pre- Iterations Loop Post-
processing (until termination condition is satisfied) processing

4 cycles Worst-case 1548 cycles for 1024-bit inputs 8 cycles
and 387 cycles for 255-bit inputs

* Preserve results when shifting in CSA form

* Allocate multiple cycles for processing steps
 Subsample a, b for termination condition

e Minimize control overhead

Stanford University Kavya Sreedhar 32 /42

Introduction Design Space Accelerator Results

Critical Path for ASIC in 16nm
255-bit XGCD 1024-bit XGCD
DFF clkto Q 45 40
|CnSvAe rter 178 309 flelgggtsc vgf; uyin CSAform: Critjcal Path
CSA 31 39 ; :: lcsa | [csa| fesa —[>>2 input
Buffer 13 0 om—> o
CSA 30 34
Shift in CSA form 15 18
Late select muxes 18 18
Precomputing control 27 22
Setup Time 2 5
Total 204 215

Stanford University Kavya Sreedhar 33/42

Introduction Design Space Accelerator Results

Critical Path for ASIC in 16nm
255-bit XGCD 1024-bit XGCD
DFF clkto Q 45 40
Inverter 7 0 5 inputs with u,y in CSA form: . s
Coed 3 CSAs Critical Path

CSA 18 39 N
CSA 31 39 v —| lcsal fesal Jesa| | =51, input

3b,., —» to mux
Buffer 13 0 m
CSA 30 34
g T = T These are post-layout numbers
Late select muxes 18 18 for a fabrication-ready design
Precomputing control 27 22
>etup Time 2 > 255-bit XGCD: 4.5 GHz
Clockokew 6 41 1024-bit XGCD: 3.9 GHz
Total 220 257

Stanford University Kavya Sreedhar 34 /42

Cycle Count

Introduction Design Space Accelerator Results

255-bit Constant-time XGCD Comparison

10°
[DdPM+21]: 41 [BY19]: 3.7

10* V'S Our ASIC
103 [Por20]: 2.7 e 31X faster than [Por20]
* First for constant-time 255-bit XGCD

102 Ours: 0.089

10! Better

100 * Times are in us g

0.1 1 10
Clock Frequency (GHz) @ software & FPGA A ASIC

Stanford University Kavya Sreedhar 35/42

Cycle Count

Introduction Design Space Accelerator Results

255-bit Constant-time XGCD Comparison

[DdPM+21]: 41 [BY19]: 3.7

104 ¢ Our ASIC
103 [Por20]: 2.7 * 31X faster than [Por20]
* First for constant-time 255-bit XGCD

107 Ours: 0.902 Ours: 0.089

10! Betterg Direct FPGA Comparison

100 " Times are in us Our design is 45X faster

0.1 1 10
Clock Frequency (GHz) @ Software @ FPGA A ASIC

Stanford University Kavya Sreedhar 36 /42

Cycle Count

Introduction Design Space Accelerator Results

1024-bit XGCD Comparison

GNU C++ on Apple M1: 10.7

10°
e

104 [ZTW21]: 6.5 Our ASIC

103 [AHAJS16]: 15 A A [25T+20]: 6 e 36X faster than software
ours: 0.295 e 8X faster than state-of-the-art ASIC

10?

101 Better

100 * Times are in us g

0.01 0.1 1 10
Clock Frequency (GHz) — Software & FPGA A ASIC

Stanford University Kavya Sreedhar 37 /42

Cycle Count

Introduction Design Space Accelerator Results

1024-bit XGCD Comparison

GNU C++ on Apple M1: 10.7

10° \
104 [ZTW21]: 6.5 Our ASIC
o [AHAISLEL: 15 —TA 25T+201:6 . 36x faster than software
: Ours:5.6 Qurs- 0295 ° 8Xfaster than state-of-the-art ASIC
10
101 Better Direct FPGA Comparison
100 ™ Times are in us g Our design is 2.7X faster
0.01 0.1 1 10
Clock Frequency (GHz) — Software & FPGA A ASIC

Stanford University Kavya Sreedhar 38 /42

Introduction Design Space Accelerator Results

Our design impacts application approaches

1. Supports progression in state of the art for Curve25519

Stanford University Kavya Sreedhar 39/42

Introduction Design Space Accelerator Results

Our design impacts application approaches

1. Supports progression in state of the art for Curve25519

2. Informs reasonable security levels for this type of VDF [ZZOTW23]

Stanford University Kavya Sreedhar 40/ 42

Introduction Design Space Accelerator Results

Our design impacts application approaches

1. Supports progression in state of the art for Curve25519
2. Informs reasonable security levels for this type of VDF [ZZOTW23]

3. May be useful for other applications

Stanford University Kavya Sreedhar 41 /42

Introduction Design Space Accelerator

Results

Our design impacts application approaches

1. Supports progression in state of the art for Curve25519

2. Informs reasonable security levels for this type of VDF [ZZOTW23]

‘

3. May be useful for other applications ﬂ}
a ;}ﬁ-

‘-I

https://github.com/kavyasreedhar/sreedhar-xgcd-hardware-ches2022

Stanford University Kavya Sreedhar

42 /42

https://github.com/kavyasreedhar/sreedhar-xgcd-hardware-ches2022

