
Anti-Exfiltration for EC Signatures

Andrew Poelstra
Director, Blockstream Research

May 3, 2023



EC Signatures

Valid EC signatures are linear equations in two secret variables:

s = kG + e · xG

One equation, two unknowns:

▶ (permanent) secret key

▶ (ephemeral) secret nonce



Nonce Reuse

▶ Reusing an nonce immediately gives “two equations, two unknowns” which can be
solved for the secret key

▶ Even slight deviations from uniform can be solved (Henninger/Breitner 2019)

▶ Deviations can be hidden so that only a specific attacker can exploit them

It is essential that nonces be generated uniformly at random! But if a hardware wallet
is generating the randomness, a user has no way to verify this.



Solutions

▶ Deterministic nonces (RFC6979) prevent accidental nonce bias/reuse.

▶ But provide no way for the user to verify whether it was used.



Solutions

▶ ZKP’s could provide assurance that DN was used (NSRW 2020, “Musig-DN”)

▶ But ZKPs are verify expensive to run on limited hardware.

▶ Also complex, have more room for implementation faults

▶ And anyway typical ZKPs have their own nonces that could be biased!



Solutions

▶ Multisigning with the host computer would re-randomize the nonce

▶ But requires the host manage a key (or user manage a passphrase)

▶ Needs to be designed with nonce de-biasing in mind

▶ Implementation complexity



Solutions

▶ But the multisig idea is basically the right idea

▶ Suppose the host provides only a nonce contribution, not a key contribution (so
not really multisig)

▶ This contribution can be random and thrown away after use



Anti-Exfiltration

▶ Our solution is called anti-exfil

▶ The host provides a random challenge; the HWW tweaks its nonce to commit to
the challenge; the host verifies the tweak

▶ The tweaking completely re-randomizes the nonce, eliminating any bias

▶ As long as an attacker hasn’t compromised the HWW and the host, he cannot
extract any information



[bonus] Technical Problems

Two-party signature construction schemes need to avoid several pitfalls of naive
implementations:

▶ If host provides randomness first, can the HWW grind its untweaked nonce to bias
the final nonce?

▶ If HWW provides an untweaked nonce first, can the host bias the nonce?

▶ If the HWW goes first, and is deterministic, can the host ask for two signatures
with different tweak,s extracting the secret key?

▶ Can the host verify that the tweaking was done correctly (the whole point of this
scheme :))?



[bonus] Technical Solution

These problems are solved by the following protocol:

▶ The host chooses random data and sends a commitment to the HWW.

▶ The HWW feeds this commitment, with its secret key and message, into a
deterministic nonce function to produce an untweaked nonce. It sends this nonce
to the host.

▶ The host sends the actual randomness to the HWW.

▶ The HWW verifies the randomness matches the commitment, then tweaks its
nonce (using P 7→ P + H(P∥r)), and generates a signature.

▶ The host verifies that the resulting signature uses the correct tweaked nonce.



Thank you

More information, and links to implementations, are at
https://blog.blockstream.com/anti-exfil-stopping-key-exfiltration/

A toy implementation/example from 2017 can be seen at
https://github.com/opentimestamps/python-opentimestamps/pull/14

I am Andrew Poelstra andrew@blockstream.com

https://blog.blockstream.com/anti-exfil-stopping-key-exfiltration/
https://github.com/opentimestamps/python-opentimestamps/pull/14

